
A l g o r i t h m s a n d J a v a S c r i p t P r o g r a m s i n C a l c u l a t i o n

o f R - F u n c t i o n s a n d P r o d u c i n g T h e i r T w o - a n d

T h r e e - D i m e n s i o n a l C h a r t s

Roman A. Uvarov1 *

Proceedings of the 5th International Conference on Nonlinear Dynamics
ND-KhPI2016

September 27-30, 2016, Kharkov, Ukraine

Abstract
Usage o f HTML5 canvas element suitable fo r two- and three-dimensional charts o f the function is unveiled.
Appliance o f JavaScript dynamics to this element is implemented. R-functions and level curves construction
details are specified. Two- and three-dimension function charts are represented.

Keywords
HTML5, canvas, JavaScript, level curves, theory of R-functions

1 Scientific Fellow at Podgorny Institute for Mechanical Engineering Problems of NAS of Ukraine,
2/10 Dm. Pozharsky str., Kharkiv, Ukraine
* Corresponding author: rqa0001@gmail.com

Introduction

Automation of the process for charting the various functions in order to visualize their study
under the modern state of information technology development can be solved in many different ways,
either complex, requiring a lot of software and hardware resources, or relatively simple, requiring
basic knowledge of programming. Object-oriented programming has firmly occupied a niche in the
approaches to the implementation of computational algorithms. One of the modern object-oriented
programming languages, extendable for a particular purpose and not demanding to resources, is a
high-level JavaScript language.

Modules used to translate the JavaScript language are embedded into modern web browsers.
These modules are also updated with the upgrade of web browsers, adding the support of features of
constantly evolving language. Web browsers translate the HTML language that describes the visual
representation of static web pages, such as a graphical user interface, and the JavaScript language
allows us to describe and define the dynamics of the interaction of web page elements with each other
as well as the user with a web page on the client level.

Thus, the researcher requires a web browser and basic knowledge of JavaScript and HTML
with CSS for the full implementation of computational algorithms. This gives an advantage to the
researcher in a sense of obtaining quick results, because the research does not require special heavy
IDEs and compilers, running or creating executable programs under a certain platform, which is
controlled by a certain operating system. Also, since the program code is not compiled but remains in
the open form, it can be easily modified by the researcher, for example, in the case of changes in the
computational algorithm. So, simple in terms of implementation and usage and multi-functional in
terms of the given task processing, the approach to the implementation of computational algorithms in
JavaScript language is a handy for using, studying, and solving the practical problems.

1. Application of JavaScript and HTML5 Canvas Element to Rendering of the Level Curves of
Function

To render a chart of two-dimensional or three-dimensional functions, we will use the canvas
element, introduced in HTML5 and supported by modern web browsers such as Internet Explorer,

527

mailto:rqa0001@gmail.com

Roman A. Uvarov

Opera, Firefox, Chrome, Safari. Depending on the context of this element usage, the represented chart
of the function will be either one-dimensional or two-dimensional, when the input getContext method
parameter value is "2 d", or three-dimensional, when the value is "webgl" or "experimental-webgl''.

The aim o f th e w o rk is to show quick and easy appliance of JavaScript to producing the charts
of two- and three-dimensional functions also constructed with R-operations.

We will begin with producing a two-dimensional chart of the function. First, let’s create a
canvas element in HTML5 (Fig. 1), which will be processed by draw() method on loading a web
page.

<html>
<head><title>Canvas code</title>
<script>JavaScript code will be here...</script>
</head>
<body onload="draw()">
<canvas id="canvas" width®"800" height*"600"x/canvas>
</body>
</html>

Figure 1. Creating a canvas element on a web page

After that in the script section, containing a JavaScript program, we will create a draw()
method, defining the context of canvas object. Since we’re planning to build a two-dimensional chart
of the function, the value of context will be equal to "2d". Also under the same method we’ll
determine a scale of function display as well as signs to show or hide negative coordinate semi-axes
of Cartesian coordinate system. We’ll complete the draw() method by calling showAxes() method to
construct coordinate axes and by calling funGraph() method to build any two-dimensional function,
which on Figure 2 will be funOmega function, but its construction will be discussed later.

function drawQ {
var canvas = document.getElementById("canvas");
if (null=canvas || ! canvas . getContext) return;

var axes={}, ctx=canvas.getContext("2d");
axes.xO = .5*canvas.width; // xO pixels from left to x=0
axes.yO = .5*canvas.height; // yO pixels from top to y=0
axes.scale — 3; // 3 pixels from x~0 to x=l
axes.doNegativeX = true;
axes.doNegativeY = true;

showAxes(ctx,axes);
funGraph(ctx,axes,funOmega,"noColor", 2) ;

}
Figure 2. A method of displaying the coordinate axes and an arbitrary function

Represented in Fig. 3 method showAxes (), constructing coordinate axes, takes into account
the signs to show or hide the negative coordinate semi-axes, which are set in the draw() method, and
may remain the same all along possible further modifications to the program.

function showAxes(ctx,axes) {
var xD—axes.xO, w-ctx.canvas.width;
var y0=axes.y0, h=ctx.canvas.height;
var xmin = axes.doNegativeX ? 0 : xO;
var ymin = axes.doNegativeY ? 0 : yO;
var ymax = axes.doNegativeY ? h : 0;
ctx.beginPath();
ctx.strokeStyle = "rgb(128,128,128)";
ctx.moveTo(xmin,yO); ctx.lineTo(w,yO);
ctx.moveTo(xO,ymin); ctx.lineTo(xO,ymax);
ctx.stroke();

}
Figure 3. Implementation of the method for displaying the coordinate axes

528

Roman A. Uvarov

Before proceeding to implement the method of constructing an arbitrary two-dimensional
function, we declare an array of colors (Fig. 4), which will be used to represent the eight level curves
of the function.

var colors = ["rgba(
"rgba(

0, 0,200,0.5)
0,200, 0,0.5)

"rgba(200, 0, 0,0.5)
"rgba(0,200,200,0.5)
"rgba(200, 0,200,0.5)
"rgba(200,200, 0,0.5)
"rgba(150,150,150,0.5)
"rgba(10, 10, 10,0.5)

// blue
// green
// red
// cyan
// magenta
// yellow
// light grey
// dark grey

Figure 4. An array of colors of function level curves

Implementation of the method for constructing an arbitrary two-dimensional function will
consist of several successive parts. At first, a subroutine (Fig. 5) to find the maximum and minimum
values of the function in the field of values as well as to determine the equal width of level curves,
which is calculated as a ratio of a maximum function value to a number of level curves (or a number
of colors array for level curves).

function funGraph (ctx,axes,func,color,thick) {
var xx, yy, dx=l, dy=l, xQ=axes.x0, y0=axes.y0, scale=axes.scale;

var iMax = Math.round((ctx.canvas.width-xO)/dx);
var iMin = axes.doNegativeX ? Math.round(-x0/dx) : 0;
var jMax = Math.round((ctx.canvas.height-yO)/dy);
var jMin = axes.doNegativeY ? Math.round(-y0/dy) : 0;

// determining the value of & function
var wMax = 0 ;
for (var i—iMin;i<—iMax;i++) {
for (var j=jMin;j<=jMax;j++) {
xx = dx*i;
yy = dy*j;
var w = scale*func(xx/scale, yy/scale);
if (w>wMax) {wMax—w)

}
}
// defining the equal range of level lines
var range = wMax / 8;

Figure 5. Subroutine to find maximum and minimum values of the function and to determine the equal
width of level curves

Next, we’ll implement subroutine (Fig. 6) to display the maximum values for each level curve
of the function in the upper right corner of the canvas element.

//level line results
var HResX = nS:
var HResWidth = 15;
var HResXd = HResX - HResWidth;
ctx.font=r15px Georgia";

for (var- ci=0 ;ci<=7 ;ci++) {
ctx.fillStyle=colors[ci];
ctx.fillRect((ctx.canvas.width-llResX),0+(10+5)*ci,10,10);
ctx.fillText(Math.round(range*(ci+1)*100)/100,

(ctx.canvas.width-llResXd),10+(10+5)*ci);
}

Figure 6. Subroutine to display the maximum values for each level curve of the function

529

Roman A. Uvarov

And finally, the third part of the implementation of the method will be devoted to a subroutine
(Fig. 7) plotting the functions.

//drawing the level lines
ctx.beginPath();
for (var i=iMin;i<=iMax;i++) {
for (var j— jMin;j<—jMax;j++) {
xx = dx*i; yy = dy*j;

var w = scale*£unc(xx/scale, yy/scale);
if (w<0) ctx.moveTo(xO+xx,yO-yy)
else {
for (ci=0;ci<=7;ci++) {
if (w>range*ci && w<=range*(ci+1)) {

ctx.fillStyle—colors[ci];
}

}
ctx.fillRect(xO+xx,yO-yy,1,1)

}
}

ctx.stroke();
}

Figure 7. Subroutine plotting the functions

This construction will be carried out in the following way. From top to bottom and from left
to right all the points of the display area are taken step-by-step, and the value of function transmitted
to the method for displaying is computed in each point. If the function value falls into the range of
values of the level curves determined in advance in the first part of the implementation of the method,
a given point will conform to this level curve color from a prepared set.

We’ll implement the R-conjunction and R-disjunction operations [1] as it is shown in Fig. 8 .
We’ll use an operation with an index equal to 1 because it is the fastest from a computational point of
view.

// OR // AND
function r_diz(x, y) { function r_con(x, y) {
var result; var result;
if (x>y) result=x; if (x<y) result=x;
else result=y; else result=y;
return result; return result;

> >
Figure 8. R-conjunction and R-disjunction operations

We’ll implement support functions and composite function funOmega as it is shown in Fig.9.
And funOmega itself will be fetched to display in funGraph(), calling it from draw().

function funl(x, y) {return 60*60-x*x-y*y;)
function fun2(x, y) {return (20*20-x*x);}
function fun3(x, y) {return (10*10-(y-40)* (y-40));)

function funOmega(x, y) {
var wl = fun2(x,y);
var w2 = fun3(x,y);
var w3 = r con(wl, w2);
var w4 = funl(x,y);
var w5 = r_con(-w3, w4);
return w5;

j
Figure 9. Support functions and composite function funOmega

530

Roman A. Uvarov

The result of the program, parts of which are given here, will be a two-dimensional chart of
the function with a maximum values on the level curves shown in Fig. 10.

Figure 10. Two-dimensional chart of the function, constructed with R-operations

The results of producing the charts of three-dimensional functions are shown in Fig.11.

Figure 11. Charts of three-dimensional functions

Conclusions

As a conclusion it may be stated that using the JavaScript language and having a modern web
browser at hand, a researcher can simply and quickly implement various computing algorithms,
including those for rendering two-dimensional and three-dimensional charts of functions, which also
built up with the help of R-operations.

References

[1] Rvachev V.L. Theory o f R-functions and its severa l applications. Kiev: Nauk. dumka; 1982.

531

