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Abstract

The models for description of creep-damage behaviour in materials and thin shallow shells
and plates deforming in conditions of joint action of static and fast cyclic load are given. The
properties of the proposed material model were established by comparison of experimental and
numerical data. The method for numerical simulation by in-house code of a dynamic creep and
long-term strength of shallow shells and plates is created on the basis of the FEM. New laws
of dynamic creep influence on stress-strain state, shaping and fracture of thin-walled elements
of structures had been established by numerical calculations. With the purpose of verification
of the created method of dynamic creep numerical simulation of rectangular plates made of an
aluminium alloy were carried in order to verify the method of calculation.
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1 Introduction

It is known from the experience of operation of different structures, that the conditions
of their loading in many cases correspond to the joint action of static and cyclical loads.
In high-temperature area at such loading in a material of structures the irreversible creep
strains and damage evolution conditioned by mechanisms of cyclical strains are developed.

Also the level of temperature occurs the essential influence on behaviour of metal ma-
terials under cyclical load. So resistance of a fatigue, processes of damage accumulation,
mackrocrack initiation and propagation determine the long-term strength of a material
at low and normal temperatures. In conditions of high-temperature action not only struc-
tural modifications in a material have been noticeably intensified, but also the character
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of cyclical deformation varies. So in the field of high temperatures ( ≥ 0.5Tmelt ) athermal
softening processes at a fatigue are substituted on thermally activated. It is exhibited
by presence of inflection points on a fatigue curve aside of a sharp drop of a resistance
to a fatigue fracture. Besides in conditions of elevated temperatures the joint action of
static and cyclical loads leads to an accumulation of irreversible creep strains. It is known
Refs [1-5] that the fracture of a material as a result of a cyclical creep occurs for a limit
number of cycles and is determined by joint processes of a fatigue and creep. And to
separate pure fatigue fracture from cyclical creep one it is impossible. At the same time
it is possible to select areas of preferential development of different failure processes. The
quantitative measure for separation of processes which are carrying by different fracture
mechanisms due to experimental data can be selected the stress cycle asymmetry coeffi-
cient Acr = σcycl/σstat. It can be regarded as invariant to time fracture initiation depending
from temperature and physical and chemical properties of the material. From the phys-
ical point of view magnitude Acr corresponds to a condition of a stick-slip variation of
a fracture activation energy that determines its estimation from the analysis of thermal
activation parameters of a fatigue and creep Ref. [6].

The investigations of the stress-strain state of creeping structures in conditions high cyclic
loading refer to a problem of a dynamic creep. The phenomenon of a dynamic creep
occurs in conditions of superposition on constant stress of a high-frequency ( > 1..3 Hz )
a periodically varying stress with amplitude which is not exceeding a values of average
stress – A ≤ Acr Ref. [5]. Investigations of a dynamic creep (vibrocreep) in pure metals,
for example, J. Greenwood’s and J. Kennedy’s experiences on lead samples, A. Meleka’s
on copper samples, M. Manjoine’s on aluminum-copper ones have shown the essential
acceleration of the creep process in comparison with the static loading and with saving the
regularities of stationary creep. The essential reduce of long-time strength and intensive
softening by A.E. Johnson and N.E. Frost, B.J. Lasan, J. Guarnieri and L.A. Erkovich,
F.H. Vitovec are marked for different high-strength steels. It was established, that the
frequency of cyclical load after some value (3..10 Hz), which is characteristic for each
material, does not influence properties of a dynamic creep.

B. Lasan and afterwards J. Vidal, R. Koterazawa and S. Taira, Yu.N. Rabotnov had
done the description of material behaviour at a dynamic creep conditions on the basis
of the concept of equivalent static stress σeq, defined on parameters of loading cycle. In
Refs [1,7,8] the magnitude of static stress caused a creep strain is equal for cyclical one
have been used. The magnitude of constant stress is equal to the sum of the average stress
and additional component, depending from amplitude of cyclical stress was presented in
Ref. [4]. The connection between cyclic and static strain rates in conditions of action by
only static component of cycle was considered by A. Nadai in Ref. [9]. The generalization
of laws between parameters of static and dynamic creep processes and their experimental
verification for high-temperature nickel-based alloys was presented in Ref. [10].

The estimation of long-term strength at a dynamic creep can be done on the basis of the
equations of durability as the correlation of limiting stress σcycl and σstat depending on
the assumptions about damage accumulation due to fatigue and creep Ref. [11], as well
as with using of phenomenological rupture models. For the last one the laws of long-term
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static strength are obtained by analogy with creep at some equivalent stress calculated
for the cycle of loading Refs [4,5].

The numerical analysis of the dynamic creep in structures is slightly presented in a lit-
erature. It is possible to mark only some papers for case of a uniaxial state. In Ref. [5]
the problem of the determination stress-strain state in a beam loaded by static axial and
cyclical bending load is solved. The solutions of the dynamic creep problem for a sys-
tem of two beams loaded by a variable concentrated force for the cantilever beam with a
rectangular cross-section under load with the variable moment are obtained by J. Boyle
and J. Spense Ref. [12]. Non-stationary alternating cyclic loading by the moment for the
cantilever beam with round cross-section was studied in Ref. [13]. A creep damage prob-
lem for a beam at pure bending subjected by external cyclic moment has been solved by
L.M. Kachanov Ref. [14].

The cyclic creep-damage problems in case of multiaxial stress state are solved in Refs [15-
18] on the basis of the procedure of asymptotic expansions in two time scales. The general
solution of the cyclic creep-damage problem Ref. [15] was used for a two-dimensional stress
state Ref. [16] and for shells of revolution Ref. [17]. The applicable constitutive equations
were suggested in Ref. [18].

The aim of this paper is, at first, the extension of the general dynamic creep constitutive
equations on the case of multiaxial stress state taken place in thin shallow shells and plates,
at second, the elaboration the numerical method for the simulation of a dynamic creep-
damage process in thin-walled structural elements. Results had been obtained by using
the presented numerical method will be considered in the paper. The results of numerical
calculation and experimental data of dynamic creep of rectangular plate with cut will
be compared and discussed in order to verify the proposed method. The conclusions
about influence of high-frequency external loading on the long-term strength in thin-
walled structural elements at high-temperature conditions will be made on the basis of
data obtained in the paper.

2 Mathematical problem statement

2.1 Method of asymptotical expansions

Let the mathematical statement of the creep problem for thin shallow shells loaded by
joint action of constant and fast varying external loading will be done on the basis of the
general theory of the three-dimensional dynamic creep problem formulated in Ref. [15].

Let us present the external surface load in a shell as the sum of two components - main
slowly varied in time or constant action and oscillated action: p = p0 + p1Φ (Ωt). The
function Φ(Ωt) varies under the law of a single-periodic harmonic function with constant
frequency Ω and period T = 2π/Ω is essentially smaller, than time before rupture t∗.
Let us suggest the existence of the small parameter µ = T/t? � 1 under the accepted
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conditions of loading. The incommensurability of frequencies of main and oscillation ac-
tions allows to enter two time scales, such as ’slow’ t and ’fast’ ξ = t/µ. Then the initial
system of equations of thin shallow shells dynamic creep problem on the basis of asymp-
totic expansions on the small parameter µ for unknown functions, which depending on
coordinates and two time scales and their averaging on a period of simple cycle can be
reduced to recurrent system of equations which are adequate to two initial-boundary value
problems. First one is the usual creep problem, where the creep evolution performs in a
scale of ’slow’ time at an action of constant external loading. This problem determines
the main, global creep-damage process. The unknowns of this problem we shall mark by
an index “0”. The second problem corresponds to the forced elastic harmonic oscillations
are developed in a scale of ’fast’ time. In this case the unknown functions we shall mark
by an index “1”.

Using the equations of Kirchhoff-Love type theory for thin shallow shells Ref. [19] by
saving the usually accepted in the theory unknowns we can write a system of equations
for the stationary creep of shell problem as follows

T 0
ij,j = 0

M0
ij,ij + kijT

0
ij + p0 = 0 (1)

Q0
i = M0

ij,j (i, j = 1, 2)

where Tij designate the membrane forces, Qi correspond to shear forces, Mij are the
bending and twisting moments, kij are principal curvatures in the middle surface of shell.

Geometrical the strain-displacement relations including nonlinear terms for consideration
finite deflection, is used quadratic terms only, can be written as

ε0
ij = Cijklσ

0
kl + c0

ij = ε0 m
ij + z · χ0

ij

χ0
ij = −w0

,ij (2)

ε0 m
ij =

1

2

(
u0

i,j + u0
j,i + w0

,iw
0
,j

)
− kijw

0 (i, j = 1, 2)

Here εij are the components of full strain tensor, cij are the components of creep strain
tensor; εm

ij are the strain components and χij are the components of the changes of curva-
tures and twisting of the middle surface; ui – are the displacement in plane and w presents
the deflection in middle surface of shell.

The creep constitutive equations are written in framework of the theory of shallow shells
including the additional creep components

T 0
ij = bijkl ε0

kl
m − TC

ij

M0
ij = dijklχkl −MC

ij

bijkl =
Eh

1− ν2
·
[
δikδjl ·

(1− ν)

2
+ ν · δijδkl

]

dijkl =
Eh3

12(1− ν2)
·
[
δikδjl ·

(1− ν)

2
+ ν · δijδkl

]
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TC
ij =

h/2∫
−h/2

b̄ijkl · ckl dz , b̄ijkl =
bijkl

h

MC
ij =

h/2∫
−h/2

d̄ijkl · ckl · z dz , d̄ijkl =
12dijkl

h3
(3)

The motion of shells in a scale of ’fast’ time at small forced vibrations can be expressed
by following known equations Ref. [20]

T 1
ij,j = ρhu1

i,ξξ

M1
ij,ij + kijT

1
ij + p1 = ρhw,1ξξ (4)

Q1
i = M1

ij,j, (i, j = 1, 2)

The system of equations Eqs (1,4) cannot be considered as independent. The constitutive
equations of a stationary creep contain the creep strains c0

ij, which are determined from
the dynamic creep constitutive equations. They include amplitude stresses, defined only
after solution of the forced vibrations problem.

2.2 Constitutive equations

Within the framework of the accepted approach Ref. [15] the dynamic creep constitutive
equations can be obtained from constitutive equations of a stationary creep law after
its modification using the asymptotic expansions and averaging in a cycle. The obtained
relations will differ from the laws of a stationary creep only by functions depending on the
stress cycle asymmetry coefficient. This coefficient is equal to the ratio of the amplitudes
of von Misses equivalent stress (solution in ‘fast’ scale) to the creep von Misses equivalent
stress (solution in ‘slow’ scale) in a point of a shell: A = σ1

i /σ
0
i .

The relations of the classical incremental Yu. N. Rabotnov’s creep theory with structural
parameters Ref. [4] for building the stationary creep constitutive equations are used. The
material deterioration processes due to creep were described by scalar damage parame-
ter ω, based on the concept of reduction of the cross-section area of damaged material
Refs [4,5]. Then the constitutive equations for multiaxial stress state of the main global
creep coupled with damage process (neglecting by an index “0”) can be noted as ċij = Λ (σe, ω) · Sij

ω̇ = Θ (σω
e , ω) , ω(0) = 0, ω(t?) = ω?

(5)

where ċ are the components of creep strains rate tensor; ω? is the critical damage value

specified for the material; Sij are the components of the stress deviator: Sij = σij −
1

3
·

(σijδij) · δij; Λ (σe, ω), Θ (σω
e , ω) are empirical functions have to be determined by basic
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experimental investigations from uniaxial creep curves and long-term strength curves re-
spectively; σe is the equivalent stress accepted in the creep theory for generalization of
the experimental data from a uniaxial creep curve to multiaxial state; σω

e is the equiva-
lent stress accepted in the theory of long-term strength at extention to multiaxial state.
For most metal materials the dynamic creep state equations and the damage evolution
equation can be formulated as (Leckie, Hayhurst Ref. [21])

Λ (σi, ω) =
Bσn−1

i

(1− ωr)m

Θ (σω
e , ω) =

D (σω
e )k

(1− ωr)l , σω
e = σiα + (1− α)σI

(6)

Here B, n, r, m, D, k, l are the material constants have been obtained from experimental

creep data and long-term strength data; σe = σi, σi =
(

3

2
SijSij

)1/2

is the von Misses

equivalent stress; σe = σω
e is the equivalent stress for damage evolution equation, σI =

max{σ1, σ2, σ3} is the maximum principal stress. Constant α defines the sensitivity of
the material to the failure mode and depends on physical-mechanical properties of the
material.

Constitutive dynamic creep damage equations for multiaxial stress state with respect to
the relations Eq. (6) can be represented as follows

ċij =
3

2

Bσn−1
i

(1− ωr)m Sij ·H(A)

ω̇ =
D (σω

e )k

(1− ωr)l ·G(A), ω(0) = 0, ω(t?) = ω?

(7)

The influence functions H(A) and G(A) in Eq (7) are introduced in the form: H(A) =
1∫
0

[1 + AΦ(ξ)]n dξ, G(A) =
1∫
0

[1 + AΦ(ξ)]k dξ. In the case of harmonic law of forced vi-

brations the influence functions H(A) and G(A) value can be calculated numerically for
integer n and k as

H(A, n) =
1∫
0

(1 + A sin 2πξ)n dξ ∼= 1 +
n(n− 1)

4
A2

(
1 +

(n− 2)(n− 3)

16
A2

)

G(A, k) =
1∫
0

(1 + A sin 2πξ)k dξ ∼= 1 +
k(k − 1)

4
A2

(
1 +

(k − 2)(k − 3)

16
A2

) (8)

The dynamic creep damage material models proposed in this paper for uniaxial stress
state correspond to well known dynamic constitutive equation of Lasan-Taira-Rabotnov
Refs [4,5,7].

The results of dynamic creep experimental investigation using the specimens made for
aluminum alloy D16AT at 300˚C Ref. [22] due to creep time 7.5 h loaded by the constant
stress σ0 = 27 MPa and at amplitude stress σ1 = 13.5 MPa with frequency of vibration
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290 Hz are shown on Fig. 1.a). Here points correspond to averaging experimental data,
lines as well as for creep curves calculated by Eqs (7,8) for cases: 1 - A = 0 and 2 -
A = 0.5. The uniaxial creep curves with respect of last stage before the failure initiation
of a material obtained numerically for both cases of loading are presented on Fig. 1.b).
Let’s mark a satisfactory accuracy of the dynamic creep model is proposed in Ref. [18].

2.3 Variational problem statement
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Fig. 1. Dynamic creep curves for specimens made of alloy D16AT: a) comparison of experimental
(points) and numerical (lines) data; b) numerically obtained dynamic creep curves with respect
of last stage before the failure initiation.

For solving the dynamic creep problem for shallow shells let us use the approach permitting
to come from the operator form of the basic differential equations Eqs (1-4) relatively the
displacements u

Lu = p

to variational functional based on the principal of virtual displacements

(Lu, u)H −
(
p, u

)
= 0,

such expression at the case of the symmetric and positive operator Lu coincides with an
energy functional

F (u) = (Lu, u)−
(
p, u

)
= 2

∫
υ

W (u) dυ −
∫
S

pu dS

where (Lu, u) designates the usually scalar product, H is the Banach space,
(
p, u

)
is the

linear functional, W (u) is specific potential energy.

7



O. MORACHKOVSKY, D. BRESLAVSKY, V. BURLAYENKO

Applying the proposed approach for a dynamic creep problem of shallow shells and as-
suming that a creep strains are known at each time step, we shall formulate a variational
functional given on displacements. The stationary condition of this functional will cor-
respond to the equilibrium equations Eq. (1) at fixed time moment and to variational
equation of the Lagrange type which includes additional work by pseudo-forces. The last
ones are defined by irreversible creep strains (underline terms in equation). The variational
equation for any time moment can be formulated as

δJ0 =
1

2

∫
S

(
T 0

ij
′
δ ε0

ij
m − M0

ij
′
δχ0

ij

)
dS −

∫
S

p0δw0 dS−

1

2

∫
S

TC
ij δ εm

ij
0 dS − 1

2

∫
S

MC
ij δχ

0
ijdS = 0 (9)

where T 0
ij
′
= bijkl ε0

kl
m

, M0
ij
′
= dijklχ

0
kl.

The principal field of unknown displacements corresponds to a minimum point of the
variational functional Eq. (9), defined on kinematically suitable displacements. Creep
strain tensor components, temperature and the external slowly varying forces are assumed
as known at each time step and have to be determined from previous time step in equation
Eq. (9).

The variational problem statement for shell small forced vibrations is well known. Varia-
tional equation in this case at ‘fast’ scale time ξ can be written as

δJ1 =
∫
S

(
bijkl ε1

ij
m

δ ε1
ij

m − dijklχ
1
klδχ

1
ij

)
dS −

∫
S

ρhu1
,ξξδu

1 dS −
∫
S

p1 · δw1 dS = 0 (10)

where u1 and w1 are unknown displacements fields of shell middle surface at the problem
of forced vibration.

3 Numerical methods

From the mathematical point of view the dynamic creep problem of shallow shells refers
to physically nonlinear initial-boundary value problem of mathematical physics. For it
solving let us usually use time-step discretization methods. Ones to it the initial nonlinear
creep problem reduces to the sequence of linear boundary-value problems with fixed creep-
load components as Eq. (9) at each time step.

The constitutive equation and damage evolution equation as Eq. (7) are integrated by
the following iteration scheme:

c(k+1) = c(k) +
(

1 + γk

2
ċ(k+1) +

1− γk

2
ċ(k)

)
∆kt,

ω(k+1) = ω(k) +
(

1 + γk

2
ω̇(k+1) +

1− γk

2
ω̇(k)

)
∆kt, (11)
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The obtained values of creep strains and damage parameter are used in Eq. (9). Weighting
coefficient γk (where k is the number and ∆k is the time-step size) can vary to assure the
accuracy, convergence and stability of the iteration scheme Eq. (11).

The solutions of linear boundary-value problem were performed by a finite element method
at each time step. FE-analysis is preferable, as allows to take into calculation complex
geometry of shells and plates and various boundary conditions without a modification of
the common solution scheme of boundary-value problems.

For the meshing we use the three-node plate simplex element with 18 degrees of freedom. It
have the shape functions are linear relatively homogeneous coordinates for approximation
the membrane displacements and cubic polynomials for deflection of a shell Ref. [23]. This
element is based on the Kirchhoff-Love type shell theory and contains 10 Gauss points
in the plane and 9 integration points through the thickness. Further let us use the usual
FEM definitions in the vector-matrix representations for main unknowns and modify the
integration on shell area by the sum of integrals on finite elements. After that we shall
reduce the variational equation Eq. (9) at the time step t ≥ 0 to following variational
equation relatively the vector of nodal principal displacements of finite element {q0β}

δJ0 =
∑
β

δJ0β =
∑
β


∫
Sβ

δ
{
q0β
}T

[D0]
T [E] [D0] δ

{
q0β
}

dS −
∫
Sβ

I

δ
{
q0β
}T

[B]T
{
p0
}

dS−

∫
Sβ

δ
{
q0β
}T

[D0]
T [P ] {cm} dS −

∫
Sβ

δ
{
q0β
}T

[DL]T [P ] {cm} dS

+

(12)∑
β

∫
Sβ

{
q0β
}T (

[DL]T [E] [D0] + [D0]
T [E] [DL] + [DL]T [E] [DL]

) {
q0β
}

dS

where β is the number of element, [B], [E], [D] = [D0] + [DL] and [P ] are the shape,
elastic, strain (linear and nonlinear) and creep strain matrixes respectively, writing in
usual definitions of FEM.

After the FEM summing procedure the variational equation Eq. (12) has been reduced
to the solution of the following system of linear equations

[K] ·
{
q0
}

= {Fp}+ {Fc} , (13)

where [K] = [K0] + [KL] is the global stiffness matrix:

[K] =
∑
β

∫
Sβ

[D0]
T [E] [D0] dS+

∑
β

∫
Sβ

(
[DL]T [E] [D0] + [D0]

T [E] [DL] + [DL]T [E] [DL]
)

dS ,

{Fp} is the generalized external force vector:

{Fp} =
∑
β

∫
Sβ

1

[B]T ·
{
p0
}

dS ,
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{Fc} is the generalized pseudo-force vector is defined by irreversible creep strains:

{FC} =
∑
β

∫
Sβ

[D]T · [P ] · {cm} dS .

The global stiffness matrix has been built by the known rules defined in Ref. [23] and
assuming the approach about compatibility of strains and equilibrium of forces in nodes.
Quadratic nonlinear terms [KL] in a global stiffness matrix were transferred to a right part
of the equation Eq. (13) and it was presented by the vector-column of pseudo-forces are
defined by the elastic nonlinear strains. Nonlinear loads are assumed as known from the
previous time step of the integration of the basic equation Eq. (13). The components of
stiffness matrix [K], generalized nodal forces vector {Fp}, generalized nodal pseudo-forces
vector {Fc} defined by creep strains {cm} and generalized nodal pseudo-forces vector
from nonlinear elastic strains have been calculated using the quadrature formula. So, the
integration in a plane of a finite element was performed by Hammer’s formula and through
the thickness using the Newton–Cotes one. The solution of system Eq. (13) is carried out
by Cholesky’s method. This numerical procedure uses only nonzero diagonal members of
a matrix [K] that is rather effective in practical calculations by FE-method. With the
purpose of a regularization of nodal stresses in considered FEM scheme the conjugated
approximation method was realized. Last one supposes the smoothing of nodal stresses
by polynomials coordinated with the shape functions of principal unknowns.

The forced oscillations problem of shallow shells was solved by FE-method and is reduced
to a solution of the following equation∫

V

[D0]
T [E] [D0] dV

{q1
}β

=
∫
S1

[B]T
{
p1
}

dS −
∫
V

[B]T ρh
{
q1
,ξξ

}
dV

The distribution of amplitude stresses is obtained for mesh, which is coordinated with the
solution of the creep problem. The main equation of the forced oscillations problem with
respect to {q(t)} = {q1} · cos (Ωt + α) are expressed as(

[K]− Ω2 · [M ]
)
·
{
q1
}

=
{
F 1
}

, (14)

where [M ], [K] are the mass and the stiffness matrix, {F 1} is an amplitude external
forces vector. The mass matrix [M ] is obtained similarly to ensemble procedure of stiffness
matrix Ref. [23]. For the accuracy of calculations of the system equations Eq. (14) the
mass matrix of a element ([H] is the thickness matrix)

[M ] = ρh ·
∫
Sβ

[B]T · [H] · [B] dS ,

had been derived to the diagonal form. The method of selection of a principal diagonal
and the numerical integration procedure of Euler’s scheme was used.
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Using the vector of nodal amplitude displacements {q1} which is known after solution
Eq. (14) the components of amplitude stress vector were determined as follows{

σ1
}

= [D0] · [B] ·
{
q1
}

.

The components of equivalent von Misses stress vector we can calculate from

σ1
i =

(
σ1 T · I · σ1

)1/2
; I =


1 −1

2
0

−1

2
1 0

0 0 3

 .

The constitutive equations of dynamic creep damage for multiaxial stress state in shell
will be written as follows

ċ =
B (σe)

n−1

(1− ωr)m ·H(A) ·G · S ; G =


1 −1

2
0

−1

2
1 0

0 0
3

2

 ,

ω̇ =
D (σω

e )k

(1− ωr)l ·G(A) , ω(0) = 0 , ω(t∗) = ω∗ , (15)

σω
e = σiα + (1− α) σI , σI = max

{
σ(1,2) =

1

2
·
[
(σx + σy)±

√
(σx − σy)2 + 4τ 2

xy

]}
.

Thus FEM procedure of the dynamic creep-damage problem of thin shallow shells and
plates includes a solving of the equations Eq. (12) at each time step. The resulting vector
of principal unknowns and of vector creep strain, damage and nonlinear elastic strain
vector are used for the calculation at the next time step. At the initial time moment
both problem of shells the elastic deformation and forced vibration are solved by FE
methods. On the basis of the suggested algorithm the in-house engineer software realizing
numerical calculation of the creep-damage problem of thin plates and shallow shells in
conditions of static and dynamic loading had been created. The numerical investigations
have established new laws of shaping and failure of thin shallow shells and plates in
conditions of static and dynamic creep.

4 Numerical investigations

Creep-damage processes in shallow shells and plates at static and cyclical loading were
studied. The laws of a dynamic creep in thin-walled structures are established by compar-
ison of results of calculation for both cases of loading. The calculations show that cyclical
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loading, at first, even at small amplitudes of cyclic load essentially influences on shap-
ing and life-time before the failure initiation. Secondly, the amplitude and frequency of
the external loading can essentially influence the long-term strength of thin-walled struc-
tures. So, loading with frequency which is less than the first eigen frequency of a plate or
a shell reduces the life-time before the failure initiation and this influence becomes more
significant, than more the frequency of forced oscillations come nearer to the first eigen
frequency of a plate or shell. With growth of amplitude of load the established regularity
becomes more expressed. This conclusion is illustrated by the creep curves on Fig. 2. Here
time-dependent accumulation of the creep irreversible strain c11 on the outside surface in
a central point of a square plate with clamped edge loaded at its center with the varying
transversal force P = P 0(1 + A sin Ωt) with frequency is equal to 20 Hz and P 0 = 300 kN
are shown. The sizes of the plate are accepted equal: plate length a = b = 1 m, thickness
h = 0.05 m, material Ti-6Al-2Gr-2Mo, T = 400˚C Ref. [24]. By the initial computation
was defined the lowest eigen frequency of the plate, which was equal to 419 Hz.

The numerical results of the static creep calculations with P = P 0(1+A) and A = 0.2 are
illustrated on Fig. 2 by the curve “P = 360 kN”. The numerical results of dynamic creep
with A = 0.2 and static creep ones with load is equal to its maximum value in cycle (curve
“P = 360 kN”) are shown on Fig. 2. The results for both cases are differ significantly.

Thus dynamic creep-damage process cannot be described using for the simulation only
static loading the which is equal to a maximum level of load in cycle. So, as can be seen
on Fig. 2 the time before failure initiation in case only of maximum static loading in
cycle is significantly underestimated, and as well as rate of damage accumulation and of
maximum stresses relaxation are overestimated.

The next example illustrates the time dependent solution of clamped square plate with
frequencies of external loading situated between eigen frequencies are more than first eigen
one. These numerical investigations show, that for frequencies of external loading with
frequencies are more than the first eigen one both a fall and a rise of a shaping level, a rate
of stresses relaxation and a long-term strength are possible. And, the marked regularities
are defined by character of distribution in the plate volume of a stress cycle asymmetry
coefficient.

The accumulation of a creep strain in a central point of considered above plate is presented
on Fig. 3 for a case, when the frequency of cyclical component of external loading is equal
to: 1 - 0 Hz, 2 - 1000 Hz, 3 - 1700 Hz and 4 - 2200 Hz. It can be seen on Fig. 3, that
the solutions in this case have the difference for life-time predictions and insignificant
difference for the accumulated creep strains values.

The character of the stress cycle asymmetry coefficient’s distribution, determined on a
outside surface of a plate with central cut for above cases of loading is presented on Fig. 4.
Let’s mark the significant difference in distributions of coefficient A in cut of a plate for
different frequencies of external loading. However, the maximum of coefficient A for all
cases takes place at the centre of a plate, where the calculations are defined the place of
the failure initiation. At the same time, depending on a level of forced frequency, the time
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Fig. 2. Time variation of maximum creep strain c11 on an outside surface in a central point of
a clamped edge square plate.
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Fig. 3. Influence of the frequency of external loading on the time variation for maximum creep
strain c11 in a central point of the outside surface of a clamped edge square plate.
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Fig. 4. Distribution of the stress cycle asymmetry coefficient on an outside surface of central cut
of a plate for different forced frequencies.
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before the failure initiation and rate of damage accumulation in this point of the plate
are various (see Fig. 3).

The lack of definiteness in obtained laws of dynamic creep behaviour raises a role and
practical significance of numerical simulation in the applied problems with a various com-
bination of loading. With this purpose the proposed solution method can be recommended
for the analysis of a stress-strain state and estimation of long-term strength in numeri-
cal investigations of a dynamic creep of thin-walled structural members for design or a
prediction of their properties.

5 Experimental investigations

Fig. 5. The scheme of the experimental equipment for investigations of a dynamic and static
creep of plates under transversal loading.

In order to verify the proposed method of dynamic creep calculation for thin-walled struc-
tural members the experimental investigations were carried out. The dynamic creep of
plates with a rectangular cut of an aluminum structural alloy D16AT at temperature
300˚C Ref. [25] was studied experimentally. The scheme of experimental equipment is
presented in Fig. 5. Here let us present the unit’s main parts: testing plate model (1);
load system; electric furnace; information and measurement system SIIT-3; cathode oscil-
lograph S1-77; temperature control system automatic compensate potentiometer KSP-4;
thermocouples output (6) and input (7). The plate model have linear size is equal to
a = b = 80 mm, thickness equal to h = 1 mm and size of cut is equal to c = 10 mm,
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d = 5 mm. The plate was loaded at a center the concentrated force with static component
P 0 = 100 N.

Static loading was carried by means a cable, some blocks and a massive detail of a required
mass, which it was suspended on the special support (12). The cable was incorporated to
a plate by means of the steel shift (5), which was fixed in plate central part by the screw
such that the head of the screw had small area of a touch with edges of a technological
orifice. Plate was located in assembly (3) with catches (2) realizing a boundary condition
of clamped edge plate. The electric motor (10) with eccentric (11) had excited simple
harmonic vibrations, and the rod (4) fixed in a cylindrical joint (9) had transmitted these
oscillations directly to centre of a plate with a frequency depending on an amount of
turnovers of the shaft (25 Hz) and with amplitude, depending from the eccentric inertial
properties (P 1 = 0.2P 0). The values of static and cyclic loads beforehand were tested by
the calibrated experiences. System calibration was made for determination the values of
losses of dynamic load are connected with influence of inertial characteristics of massive
details. Strain gauges with resistance value R = 100 Ω and with base 5 · 10−3 m were ce-
mented on the specimen’s surface. Signals were feed into the digital and analog outputs of
the apparatus SIIT-3. From the analog output the signal was feed to cathode oscillograph
S1-77. The heat of a plate was made by furnace with potency 3.5 kW with autocontrol
of temperature by the controlling thermocouples (7). The temperature measurement is
carried by two chromel-alumel thermocouples (6) are installed on operating part of plate
and connected to potentiometer KSP-4. The deviation from specified temperature in a
whole time of experiment didn’t exceed 1-2˚C. Temperature measurement’s results are
written on the moving diagram tape. The deflection of a plate has been registered by
the indicating gauges with a resolving capacity in 0.01 m. They have been installed in
a x-shaped sawcut of the furnace cap in points of plate remote from center on distances
10 mm and 20 mm on perpendicular directions. These points of gauging have been de-
noted on the Fig. 6 as curves 1 and 2 accordingly. Here the experimental data by a point
are presented and numerical data are shown by full line. The initial failure due to creep
in a plate was observed through a technological orifice in the furnace cap.

0

1

2

3

0 2 4 6
 t, h

 1

 2

w, mm

Fig. 6. Comparison of numerical (full lines) and experimental (points) data. Time-dependent
deflection in points of gauging (1, 2) of the plate with a cut.

The results of comparison of time-dependent deflection in sectional views of a plate with
cut obtained experimentally and computationally are represented on a Fig. 7.
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Fig. 7. Comparison of time-dependent deflection in sectional views of a plate with a cut: left –
along axis OX; right – along axis OY .

The data of the central sectional view of plate along of the greater side of a cut are
considered in the left part on Fig. 7, in right part these data are considered along smaller
side. The lines show results of numerical simulation, points contain the experimental data
registered by indicators.

Let’s mark good agreement of the numerical solution with the experimental data. The
results of the numerical simulation overestimate the deflection value in relation to experi-
mental data time to fracture. The obtained data differ in a limits 20 %. At the same time
the results on long-term strength of the plate are sufficiently near. So, the time before
rupture initiation at experimental investigations has obtained equal to 7.5 h, and the
numerical value is equal to 7 h.

Thus, the proposed calculation method of a creep and long-term strength of thin-walled
structural members allows to describe with an adequate accuracy their stress strain state
and to determine time before fracture initiation due to the creep process. Consequently
we made a conclusion that method may be used for a solution of the applied engineering
tasks.

6 Conclusions

The kinetics of stress strain state of thin shallow shells at combined static and cyclical
loading was studied in conditions of a high-temperature creep.

The variant of dynamic creep constitutive equations of a material is proposed. They were
obtained by modification of the known equations of a static creep with using of asymptotic
expansions on the small parameter and their averaging for cycle. The obtained equations
are differed from the laws of a static creep only by influence functions depending on a stress
cycle asymmetry coefficient A(t). The proposed constitutive equations were generalized
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on a case of a multiaxial stress state which takes place in shells. The equivalent stress in
the law of a creep corresponds to the von Misses stress such stress in the kinetic equation
for damage evolution was accepted using the Pisarenko-Lebedev’s long-term strength
criterion.

Within the framework of the theory of asymptotic expansions, using separation of time
on the ’fast’ and ’slow’, the dynamic creep problem of thin shells and plates is reduced to
solving both problems of a stationary creep and elastic forced vibrations. These problems
are connected by the dynamic creep constitutive equations. The solution of both problems
is carried out by FE method.

The laws of a static creep and time before failure initiation of plates and shells and new
laws a shaping and a long-term strength connected with cyclic loading are established on
the basis of calculated and experimental data. Comparison of results of calculations for
static and cyclic loading have shown, that cyclic loading, at first, even at small amplitudes
of load essentially changes data on shaping and life-time; secondly, the parameters of
external loading, such as the amplitude and frequency essentially influence the long-term
strength.
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