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The complex inherent structure of sandwich materials, including highly 
dissimilar constitutive layers leads to appearance of a new type of damage 
modes, where a partial separation between basic layers, the facesheet and core, of 
the sandwich panel so-called debonding is one of the most common defects 
among them. In the case of dynamic loading, this effect manifests itself by the 
alternation of natural frequencies, damping ratios and time-history responses. 
Therefore, in order to guarantee the safe performance of sandwich structural 
components, a good understanding of their vibration behavior has to be provided. 
On the other hand, the vibration characteristics of damaged structures can be 
useful for an on-line detection of defects (non-destructive testing) without 
actually dismantling the structures. Thus the vibration analysis of sandwich 
panels can be considered in the frameworks of damage detection problems as 
well. 

Vibration problems of composite structures such as sandwich and laminated 
panels with an imperfect interface between basic layers have attracted an 
intensive research interest. In order to tackle this complicated problem different 
approaches have been proposed. The earliest analytical model of composite 
beams with a local interface defect (delamination) was proposed in [1]. The ‘free 
mode model’, developed using the split span wise approach, neglected contact 
between freely vibrated detached surfaces. The model was used to solve an 
egienvalue problem. Wang et al. [2] improved this model by including the 
coupling between flexural and longitudinal motion in the free vibration analysis. 
Authors in [3] suggested a new, so-called ‘constrained mode model’ relaying on 
the assumption that the detached surfaces identically move in the transverse 
direction for freely vibrated composite beam. To simulate the interaction between 
upper and lower crack surfaces, a piecewise linear spring model was applied in 
[4] for obtaining an eigensolution. A nonlinear spring model for describing the 
impenetrability behavior of detached parts was proposed in [5] to model free and 
forced oscillations of a composite beam.  

In the case when the dimension of the problem under consideration is more 
than one, the use of numerical methods based mainly on the finite element 
method (FEM) is needed. Two-dimensional models applied to the free vibration 
analysis of cracked laminated beams and plates can be found, e.g. in [6]. The 
extended FEM adopted to analyze free vibrations of 2-D cracked plates was used 
in [7]. A FE model of laminated plates based on the three-dimensional theory 
was developed in [8] and a mixed model with shell finite elements for facesheets 
and 3-D elements for the core was presented in [8]. A comprehensive summary 
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on modeling techniques used to perform the free vibration analysis of debonded 
and delaminated (in the case of laminated structures) composite beams, plates 
and shells is done by Della and Shu [9]. The use of vibration characteristics for 
vibration-based damage detection methods has been recently reviewed in [10]. 

If one considers the repetitive opening and closing of the separated surfaces, 
a case that is referred to as a closing or breathing crack, then the system is highly 
nonlinear. One of approaches commonly used in vibration theory of cracked 
structures is the replacing of the continuous cracked structure with a single-DOF 
or multi-DOF oscillator model, e.g. [12,13]. Those models were successful to 
reveal nonlinear response of studied systems such as super- and subharmonics 
resonances and period doubling bifurcations. Recent investigations on the 
dissipative character of impact-like contacts in delaminated beams with an 
oscillator model within non-smooth mechanics can be found in [14].  

While the oscillator models, used in those studies allowed bringing the light 
on nonlinear phenomena of cracked structures they suffer from the lack to give a 
spatial presentation of a continuous structure. This issue is being easily overcome 
by numerical modeling techniques. For instance, the 2-D elastodynamic problem 
of a plate with one and two co-linear cracks of finite length subjected to tension-
compression harmonic loading with unilateral contact interaction at the crack 
edges was solved by boundary element method in [15]. Ju et al. [16] have studied 
forced vibrations of delaminated beams with intermittent contact in delaminated 
segments by employing the FEM. The perturbation method within the concept of 
nonlinear normal modes was applied in [17] to study vibrations of delaminated 
beams. The Galerkin method and harmonic balance method were employed in 
[18] to find solutions of beam-plates with a delamination undergoing nonlinear 
free vibration. Contact-impact conditions to the separated faces of a debonded 
sandwich beam discretized by plate finite elements were applied via appropriate 
contact elements in [19]. To prevent penetration at delamination interfaces, 
unilateral contact constraints by Lagrange multiplier method were imposed in the 
FE time response analysis of a composite plate with multiple delaminations in 
[20]. A semi-analytical approach for studying free oscillations and transient 
dynamics of simply supported debonded sandwich beams accounting for a 
contact interaction between the detached parts was proposed in [21]. A further 
contribution into a nonlinear dynamic behavior of sandwich plates with an 
imperfect interface can be found in [22], where the case of a sandwich plate 
containing a post-impact zone was considered by a 3-D FE model in the 
ABAQUS code.  

The aim of this paper is to investigate a dynamic behavior of sandwich 
plates with debonding by numerical simulations. A computational model of 
sandwich plate in FE software is developed involving features of the contact 
problem between debonded parts and finite-element procedure with explicit time 
integration. The forced vibration analysis is discussed.  
1. Governing Equations. In this section the mathematical aspects of the general 
elastodynamic problem of a body with intermittent interactions at separated 
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interfaces are briefly discussed. For further details, we refer to [23]. Here, we 
will use notations that are usual in continuum mechanics.  
 

a) b) 
Fig.1. A body with a discontinuity and its representation in the reference and the 

current domains (a) and zoom of the discontinuity surfaces (b). 
 
Let us consider an initial (reference) domain 3

0 ℜ∈Ω  and its boundary 0Γ  

as shown in Fig. 1a. In doing so, 000 Γ=Γ∪Γ ut and ∅=Γ∩Γ 00
ut , where 0

tΓ  and 
0
uΓ  are parts of the boundary with prescribed tractions and displacements, 

respectively. We allow this domain to contain an internal discontinuity, e.g. 
described by 0

cΓ . Let 0
~Ω  be the open set, which excludes all discontinuities, i.e. 

0
00 \~

cΓΩ=Ω . In the current (deformed) domain, the images of the initial domain 

0Ω  and 0
~Ω  are denoted by Ω  and Ω~ , respectively as well as for all other 

notations, and the motion is described by ( )t,Xx ϕ= , where [ ]Tt ,0∈  is the 
time, and X and x are material and spatial co-ordinates, respectively. In the 
motion, the displacement at the material point X is denoted by ( )t,Xu . We 
assume that strains and rotations of the body are small and the elastic behavior of 
the body is characterized by the Cauchy law. Thus, the linear body considered in 
the Lagrangian description will be governed by the equations presented below.  

The linear momentum equation is given by 

 ii
j

ji ub
x

&&ρρ
σ

=+
∂

∂
 in [ ]T,0~ ×Ω , (1) 

where ρ is the current mass density, b is the body force, the Cauchy stress 
ijσ  are defined by the generalized Hooke’s law  

 klijklij c εσ =  in [ ]T,0~ ×Ω , (2) 
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and the components of the strain tensor ijε  obey to the Cauchy relations  

 ( )ijjiij uu ,,21 +=ε  in [ ]T,0~ ×Ω  (3) 
The Neumann and Dirichlet boundary conditions are expressed by 
 ijji tn =σ  on [ ]Tt ,0×Γ  (4) 

 ii uu =  on [ ]Tu ,0×Γ  (5) 
The initial conditions have a form of equalities as follows 
 ( ) 00, uXu =  and ( ) 00, vXv =  on Ω  (6) 
The interfacial constitutive law on the discontinuity surfaces should be 

assigned in terms of the displacements and tractions on each the surfaces as 
 ( ) 0,,, =ℵ −+−+

cc ttuu  on [ ]Tc ,0×Γ  (7) 

Note that we need to distinguish the crack surfaces +Γc  and −Γc , which are 

smooth and such that −+ Γ∪Γ=Γ ccc . Consequently, the current outward unit 

normals n+ and n−, the displacements ( )t,Xu +  and ( )t,Xu − , and the contact 
tractions ( )tc ,Xt +  and ( )tc ,Xt −  are on them. In the case when the surfaces come 

into contact, there exists the shared common boundary −+ Γ=Γ=Γ ccc , where the 
interior continuity conditions on the stresses must be met 

 c
ijjijji tnn == −−++ σσ  on [ ]Tc ,0×Γ  (8) 

Therefore, the equations (1-8) represent the strong form of the 
elastodynamic initial-boundary value problem (IBVP) for a body with a 
discontinuity. The precise form of the general interface law (7) depends on 
specific contact conditions accepted for modeling normal and tangential 
interactions. 
2. Contact Modeling. To model contact, we need first to mathematically assert 
impenetrability along the contact interface. To accomplish this goal, we employ a 
penetration function Ng  to define the normal constraint as follows 

 ( ) ( ) +−++−+ ⋅−+=⋅−≡ nuunxx 0gg N , (9) 

where ( ) +−+ ⋅−= nXX0g  is the initial gap. Besides, we need to recall that the 
point x+ is closest to the point x− in a Euclidean sense, which is being found via 
the minimal distance problem and the unit normal n+ to the surface +Γc  is at x+. 

Similarly, to include friction into the problem description we define a 
tangential slip function Tg  as the vector ( )−+ − xx  projected along unit vectors 

+
αa  tangent to the surface +Γc  (Fig. 1b) such that  

 +++++ ××= 2121 aaaan  

It yields the tangent gap vector Tg  as 
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 ( )[ ] ( ) ( )[ ] ++−++−+++−+ ⋅−+⋅−=⋅−≡ ααααα aauuaXXaaxxgT , (10) 
where the summation convention applies to the pair of the repeated indices.  

In the analysis of transient problems, the rate form of the functions defined 
contact constraints has to be provided. Following by the work [23] we can write 

 ( ) ( ) +−++−+ ⋅−=⋅−= nvvnuu &&& Ng  (11) 
 ( ) ( )α

α
υ aavvg ⊗⋅−= −+

TL  (12) 
Herein the Lie derivative is used to provide a frame invariance of the rate of 

tangential slip function.  
When contact occurs, the traction ct  on cΓ  can be decomposed into the 

normal nNt  and tangential Tt  components such that  
 nt ⋅−= cNt , (13) 
 ( ) cT tnnIt ⋅⊗−−= , (14) 

where tN is a scalar that represents the quantity of the contact pressure, and n is 
the outward unit normal. It needs to notice that the normal traction (a 
compressive force) always points inward and the tangent traction (the frictional 
force) opposes to the relative sliding direction.  

With the notations introduced above, we can express the impenetrability 
conditions in the Kuhn-Tucker form as 

 0≥Nt , 0≤Ng  and 0=NN gt  (15) 
Generally, contact pairs on the contact interface have two statuses such as 

sticking or sliding. In the case of sticking there is no tangent sliding between 
contact pairs, i.e. Tg  vanishes. For tracking the friction phenomenon associated 
with sliding, the Coulomb friction law is used, which can be expressed in the 
form of the plasticity framework [23] as follows 

 ( ) 0, ≤−=Φ NTNT tt µtt , TTT ttg γυ &=L , 0≥γ& , 0=Φγ&  (16) 
Thereby, the general interface constitutive law (7) closing the IBVP stated 

above is now explicitly defined in terms of displacements and tractions over the 
discontinuity surfaces by constraints in the form of the inequalities (15) and (16). 
3. Weak Formulation of the IBVP. To obtain a numerical solution of the local 
initially boundary value problem formulated in the previous sections a weak or 
variational form needs to be stated. We first define a specific class of test and 
trial spaces that are applicable to the finite element method. The displacement 
trial functions belong to the space of kinematically admissible displacements 
such that  

 ( ) Utui ∈,X , ( ){ }uiiii onuuCuuU Γ=Ω∈= ,| 0  (17) 
The space of test functions (or variations of displacements) is defined by 
 ( ) 0Uui ∈Xδ , ( ){ }uiii onuCuuU Γ=Ω∈= 0,| 0

0 δδδ  (18) 
The weak form of the IBVP can be stated by applying Hamilton’s principle 
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to the body under consideration. The total energy in the body involving 
intermittent contact with its detached parts will contain two parts wherein the 
first part comprises the kinetic energy and strain energy, and the second one 
comes from contribution of the contact tractions at the discontinuity. Then, a 
typical nonlinear elastodynamic problem defined for the cracked body in the 
current configuration can be governed by the following variation problem: 

Find ( ) [ ]TUtui ,0, ×∈X  such that for each [ ]Tt ,0∈  the stationary 
conditions of the following variational functional hold  

( )
+Ω+Γ−Ω−Ω

∂
∂

∫∫∫∫
ΩΓΩΩ

duudtudbud
x
u

iiiiiiji
j

i

t

&&ρδδρδσ
δ

 

( ) 0=Γ⋅+∫
Γc

dgt TTNN gt δδ , ( ) 0Uui ∈∀ Xδ  (19) 

Note that if the Kuhn-Tucker conditions (15) and (16), imposed on the 
contact boundary cΓ  are satisfied exactly, the contact term in (19) adds nothing 
to the total energy. However, it is possible only by a true solution, but it is not 
necessary by the arbitrary test functions. Because the impenetrability dictates 

0≥NN gt δ , hence, the corresponding variational formulation (19) takes the form 
of variational inequality [28]  

( )
≥Ω+Ω

∂
∂

∫∫
ΩΩ

duud
x
u

iiji
j

i &&ρδσ
δ

∫∫
ΓΩ

Γ+Ω
t

dtudbu iiii δρδ , ( ) 0Uui ∈∀ Xδ  (20) 

Herein, the contact integral provides an additional condition (constraints) to 
which the stress-strain state of the body has to obey.  

The final form of the variational functional (19) will depend on the way with 
which the constraints will be imposed. Several different approaches are available 
in literature, for instance, Lagrange multipliers, penalty method, and etc. [23]. 

Using the mechanical work identity we can recast the variational form such 
that each of the terms has a physical meaning in the virtual work equation (19),  

 ( ) 0, =−+−= TN
continertextint tPPPPP tδδδδδ , ( ) 0Uui ∈∀ Xδ  (21) 

where the symbols sequentially stand the virtual internal work, the virtual 
external work done by both body forces and prescribed tractions, the virtual work 
done by body forces in the d’Alembert sense, and the last term is the contact 
virtual work done by normal and tangential contact forces, respectively.  
4. Finite Element Formulation. To solve the variational problem (19) by the 
FEM, a finite dimensional model of the body should be developed. The domain 
Ω  is subdivided into elements eΩ  so that the union of the elements comprises 
the total domain, Ue eΩ=Ω . The nodal coordinates in the current configuration 

are denoted by iIx , I = 1 to Nn . We approximate displacement field by the 
functions from a finite dimensional space UU h ⊂ , expressed as 
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 ( ) ( ) ( )XuXu II Ntt =,  (22) 
where N is the number of discretization nodes in the domain, ( )tIu  are 
displacements at node I, and ( )XIN  is the shape function associated with node I. 
The velocities and accelerations can be obtained by taking the material time 
derivatives of the displacements such that  

 ( ) ( ) ( )XuXv II Ntt &=, , ( ) ( ) ( )XuXu II Ntt &&&& =,  (23) 
The test functions, or variations, are not a function of time, so we 

approximate the test function within the finite space 00 UU h ⊂  as follows 
 ( ) ( )XuXu II Nδδ =  (24) 

where Iuδ  are the virtual nodal velocities. 
To construct the discrete finite element equations, the test functions are 

substituted into the equation of virtual work (19). Using the arbitrariness of the 
virtual nodal displacements everywhere except on uΓ , it then follows that for 
dynamic contact problem the discretized weak form of the momentum equation 
expressed in terms of the corresponding nodal forces in accordance with (21) is: 

 ( )TN
cont
I

int
I

ext
IJIJ t tfffuM ,−−=&& , uI Γ∉∀  (25) 

Herein the internal nodal forces in the linear case can be defined in terms of 
the stiffness matrix as  

 JkIJikJklJijkljIjijI
int
Ii uKudJNcNdNf =Ω=Ω= ∫∫

ΩΩ 0

0
0

,,, σ  (25a) 

The external nodal forces are calculated by 
 ∫∫

ΓΩ

Γ+Ω=
t

dtNdbNf iIiI
ext
Ii ρ  (25b) 

The inertial nodal forces are computed via the consistent mass matrix as 
 ∫∫

ΩΩ

Ω=Ω=≡
0

00 JjJIijiI
inert
IiJjIJij udNNduNfuM &&&&&& ρδρ  (25c) 

The explicit form of the vector of contact nodal contact forces depends on a 
method chosen for implementing contact constraints into the variational equation 
(19). For instance, in the penalty method for frictionless contact this term can be 

( ) ( ) ( ) Ji
cont
IJJiNJINN

Ii

N
NN

cont
Ii uKudgHdgH

u
g

gf
cc

=ΓΦΦ=Γ
∂
∂

= ∫∫
ΓΓ

εε u , (25d) 

where { }−−++ Γ∈Γ∈=Φ cIcII IifNorIifN nn , H(gN) is the Heaviside step 
function, and Nε  is a penalty parameter. As seen from (25d), the contact forces 
are mainly defined by the approximation of the surfaces than the shape functions. 

Following the usual FEM procedure, the element nodal forces and mass and 
stiffness matrices are combined from the element level to the global one by an 
assembly operation. Also the vectors and matrices given in local coordinates are 
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transformed into the global coordinates. So, the final system of semi-discrete FE 
equations of motion with Rayleigh damping can be generally expressed by  

 ( )TN
context t tUFFKUUCUM ,,−=++ &&& , (26) 

where M, C, and K are the global mass, damping and stiffness matrices, U&& , U& , 
and U are the vectors of unknown accelerations, velocities and displacements, 

extF  and contF  are the global vectors of external and contact forces. 
One may observe that the displacements U and the contact force Fcont in (26) 

are both unknowns, as well as contact surfaces, on which the contact constraints 
must be enforced are not known a priori. Therefore, for solving the nonlinear 
problem (26) an incremental/iterative solution procedure must be used.  

The temporal discretization of (26) can be carried out by either implicit or 
explicit time integration schemes. The explicit procedure requires no the stiffness 
matrix. The accelerations at the beginning of each time increment (i) are directly 
calculated by  

 ( ))()(1)( ~ ii
ext

i IFMU −⋅= −&& , (27) 
where M~  is a lumped mass matrix obtained by transform of the consistent mass 
matrix M, and I is the common vector of forces updated during the current 
increment solution step and involving the internal forces, the forces associated 
with damping and the contact forces. Then, the central difference integration 
operator is employed to find the nodal velocities and displacements as the 
following 

 )(
)()1(

)()(

2
2
1

2
1

i
ii

ii tt UUU &&&& ∆+∆
+=

+
−+  and )()1()()1( 2

1+++ ∆+=
iiii t UUU &  (28) 

where the superscripts ( )21−i  and ( )21+i  refer to mid-increment values. 
The disadvantage of the explicit procedure is that the time increment used in 

an analysis must be smaller than the stability limit of the central-difference 
operator. An approximation to the stability limit is defined by the smallest transit 
time of a dilatational wave across any of the elements in the FE mesh, [24]. 
5. Finite Element Model. The approach described above for solving of the 
elastodynamic problem of the cracked body can be easily adopted within a 
standard explicit dynamic finite element code. To simulate dynamic responses of 
sandwich plates involving contact conditions in detached segments of the 
debonding zone, the ABAQUS/Explicit software [24] is exploited. The finite 
element model, which is used for the simulation of the dynamic problem, is 
shown in Fig. 2. The FE model takes the sandwich plate modeling idea of [25]. 
In the developed model the facesheets are represented as Reissner-Mindlin plates 
whereas the core is modeled as a three-dimensional continuum. That modeling 
capability enables to give accurate FE simulations for analyzing a broad range of 
sandwich plate problems. Especially whenever the core is flexible or localized 
effects such as a concentrate load applied or debonding phenomenon.  
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The facesheets are discretized by reduced integrated 8-node continuum shell 
finite elements, SC8R. These elements discretize an entire three-dimensional 
body, unlike conventional shell elements, which discretize a reference surface. 
The SC8R are linear elements and have displacement degrees of freedom only. It 
should be mentioned that in the case of laminated facesheets, the continuum shell 
elements were stacked to provide a more refined through-the-thickness response 
of transverse shear stresses and forces. Because, the continuum shell elements 
can be connected directly to first-order continuum solids without any kinematic 
transition, 8-node isoparametric linear solid ’brick’ elements with incompatible  
 

 
Fig.2. 3-D FE model of a sandwich plate with a penny-shaped debonding zone. 

 
mode C3D8I were chosen for core modeling. In addition to the standard 
displacement degrees of freedom (three translations in each a node), 
incompatible deformation mode is added internally to the elements in order to 
eliminate the parasitic shear stresses that cause the response of the regular first-
order displacement elements to be too stiff in bending. For detailed information 
concerning element technology we are referred to [24]. The shell elements were 
positioned on the upper and lower core sides and were directly connected to the 
core through their share nodes. The debonding was introduced by an actual small 
gap in a certain zone between the facesheet and the core. The mesh density of the 
sandwich plate was higher in the part, where the debonding zone was defined.  

The contactable parts of the facesheet and the core at the damaged interface 
of the vibrating sandwich plate were simulated by using the surface-to-surface 
discretization method. The relative motion of the interacting surfaces was 
described with small displacements kinematics. The contact behavior of the 
surfaces coming into contact in the normal direction was governed by the ‘hard 
contact’ model, that is the interacting surfaces transmit no contact pressure unless 
the nodes of the slave surface contact the master surface and no penetration is 
allowed at each constraint location. The frictionless conditions were accepted 
between the surfaces interacted in the tangential direction. In the dynamic 
analysis the normal contact constraints were implemented using the penalty 
algorithm. 
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6. Numerical Results. The FE simulations are employed to obtain a deep insight 
of the debonded sandwich plate dynamics. The free vibration, dynamic transient 
and dynamic steady-state analyses of sandwich plates containing the debonding 
zone were carried out within the ABAQUS code. One configuration of a 
sandwich plate is throughout used in this study. A simply supported rectangular 
sandwich plate of 180 mm by 270 mm consisting of a 50 mm-thick WF51 foam 
core and 2.4 mm-thick GFRP face sheets and damaged by a penny-shaped 
debonding zone of a 40 mm radius at its center is being analyzed. Mechanical 
properties of the constituent materials are given in Table 1. 

The transient response of the debonded sandwich plate was first examined. 
The plate was excited by an impulse force at the central point of the bottom face 
sheet. The duration of the applied impulse force was much shorter than the 
analysis time such that 

 ( )
⎩
⎨
⎧

≥
≤≤

=
*

*0

,0
0,

tt
ttF

tF ,  

with mst 1* =  and kNF 10 = . 
 

Table 1. Material properties of the foam-cored sandwich plate. 
Components Elastic constants  
Foam core EC = 85 MPa, GC = 30 MPa, ρC = 52 kgm-3  

GFRP facesheet Exx = Ezz = 19.3 GPa, Eyy = 3.48 GPa, Gxy = Gyz = 
1.65 GPa, Gzx = 7.7 GPa, ρ = 1650 kgm-3  

 
Time histories corresponding to a transverse displacement and a longitudinal 

strain, calculated at the central point of the upper facesheet, for the same plates 
with and without debonding are compared in Fig.4. Moreover, in the case of the 
existence of debonding two FE models with and without contact conditions at the 
debonding region were applied. As one can see that the presence of the 
debonding zone significantly affects on the impulse response of the plate, and the 
period of the free decay vibration for the debonded plate is longer than for the 
intact one. It can be explained by the stiffness reduction due to the presence of 
debonding. The comparative results between plates, accounting for and not 
accounting for contact allow concluding that the neglect of contact significantly 
overestimates the time history amplitudes and, thereby, leads to misleading 
results. 

To provide a deeper insight into dynamics of sandwich plates with 
debonding, their steady-state dynamic responses are further examined. The same 
sandwich plate as in the previous analysis is subjected to a concentrated 
transverse sinusoidal force at the central point of the lower skin with the 
amplitude of 1 kN. The frequency of the exciting force is 1000 Hz that is close to 
the fundamental frequency of the sandwich plate. The calculations showed that 
the interaction at the detached surfaces in the steady-state motion plays an 
important role. Namely, one can see from Fig. 5, a pure sinusoidal waveform 
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corresponds to the steady-state histories of displacement and velocity of the 
intact plate, whereas the same signals for the debonded plate are either modulated 
as for the displacement or have absolutely lost their periodicity as for the 
velocity. Moreover, the magnitude of the velocity signal in the plate with 
debonding is remarkably greater. These results clearly demonstrate the non-
linearity of the debonded plate’s dynamics. Thereby, the typical assumption that 
if excitations are harmonic, then the response is also harmonic, commonly used 
in linear system is no longer valid for the nonlinear system. Instead, the steady-
state response of such systems described easily by modal approaches should be 
studied based on the general dynamic analysis with a periodic function. Fig. 6 
presents the deformed shapes of the debonded sandwich plate corresponding to 
two main statuses such as open debonding and closed one. 

 

 
a) b) 

Fig.4. Transient time histories at the central point: displacement (a) and strain 
(b). 

 

 
a) b) 

Fig.5. Steady-state time history responses at the central point: displacement (a) 
and velocity (b). 

 
7. Conclusions. The FE formulation is applied to study dynamics of the 
debonded foam-cored sandwich plate subjected to both impulse and harmonic 
loads. The numerical results show that in order to model accurately dynamics of 
debonded sandwich plates, the contact phenomenon has to be mandatory be 
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taking into account within the debonding region. The results also indicate that an 
impulse response and a steady-state response of debonded sandwich plates are 
remarkable affected by the presence of debonding. For the latter the steady-state 
dynamic analyses based on modal approaches are no longer valid. 

 

  
a) b) 

Fig.6. Deformed shapes of the debonded sandwich plate at a time moment 
corresponding to open debonding (a) and closed debonding (b). 
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dynamics of sandwich plates with partially damaged facesheet-to-core 
interface 
UDC 74K20 
A finite element (FE) model has been developed for analysis of the dynamic 
response of sandwich plates with partially damaged facesheet-to-core interface. 
The effect of intermittent dynamic contact between the fragments detached at the 
damaged interface is taken into account in the vibrating sandwich plate. The 
general mathematical statement of such non-linear elastodynamic problem for a 
cracked body is first formulated. Numerical results for the transient and steady-
state dynamic responses of a foam-cored sandwich plate damaged by debonding 
are obtained by using the ABAQUS code. The influence of the strongly non-
linear local contact behavior on dynamics of the sandwich plate is examined.  


