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Abstract 
The problem of nonlinear parametric vibrations and stability analysis of the symmetric laminated 
plates is considered. The proposed method is based on multimode approximation of displacements 
and solving series auxiliary linear tasks. The main feature of the work is the application of the R-
functions theory, which allows investigating parametric vibrations of plates with complex shape and 
different boundary conditions.  
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Introduction 

This work is devoted to a study of the nonlinear vibrations and stability of laminated plates with 
complex geometric shape that are subjected to a periodic in-plane load. The relevance of the problem 
is explained by wide adoption of composite materials in the industrial applications. A special attention 
has been paid to the vibrations of composite plates under various types of loading, and in particular, 
parametric vibrations. There are many publications on this subject, but the previous works considered 
mostly the plates of a canonical form with a homogeneous subcritical state. Currently, the computer 
simulation of the nonlinear dynamics of plates with complex geometric shape and inhomogeneous 
subcritical state are performed using the Finite Element Method (FEM) [5]. A different approach has 
been proposed in references [2,4]. It is based on the theory of R-functions and variational methods, 
and enables obtaining the meshless solutions to the plate and shell vibration problems. In this work 
the R-functions method (RFM) is extended to a new class of problems – nonlinear parametric 
vibrations and dynamical stability of laminated plates. In the proposed approach we will take into 
account the subcritical state.  

1. Mathematical Statement 

Let us consider the parametric vibrations of the laminated plates with symmetric structure. We assume 
that plate and all its layers have a constant thickness; and the plate is subjected to a periodic in-plane 
load tppp t ��� cos0 , where p0 is a static component, pt is an amplitude of a periodic part, and � is a 
frequency of the load. We derive mathematical formulation of the problem using Kirchhoff’s 
hypotheses. Accordingly, the strains acting in the midplane are expressed as follows:  
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In these expressions u, v, w  are the displacements of the points in a midplane in the directions of the 
coordinate axes Ox, Oy, and Oz. Stress resultants Nx, Ny, Nxy and moments Mx, My, Mxy are presented 
as: 

8 9 8 9,][ D�� CN   8 9 8 9L�� ][DM , 
where C and D are stiffness matrices: 
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8 9D ,8 9L , 8 9N , 8 9M are strain, stress and moment vectors: 
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The components Cij, Dij / 066,26,16,12,22,11�ij of stiffness matrices are defined as [1]: 
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where )(s
ijB are the mechanical characteristics of the  s-th layer. Ignoring the inertial terms, the motion 

equations, expressed in the displacements, can be written as follows [1]: 
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Differential operators iij NlL , 3,2,1, �ji in the equations (1)-(2) are defined as  
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where D  is a damping coefficient. System (1)-(2) is supplemented by the initial and boundary 
conditions. The load, specified at the traction portion of the plate’s boundary, is specified by its 
normal and tangential components: 

0, ��� nn TpN . 

The normal component nN  of the applied load can be expressed via the stress resultants Nx, Ny, Nxy  
 

lmNmNlNN xyyxn 222 ��� , / 0 / 0lmNNmlNT xyxyn ���� 22 , 
 
where / 0OynmOxnl ,cos),,cos( ��  are directional cosines of the normal vector n  to the plate’s 
boundary. 
 

2. Investigation Method  

The proposed method reduces solution of a nonlinear problem to a series of auxiliary linear 
problems. First, we need to determine the subcritical state and solve a linear vibration problem for the 
loaded plate in the midplane. Detailed description of the solution methods involved in this step as well 
as several numerical examples can be found in the reference [4]. Once eigenfunctions wi of a linear 
vibration problem are determined, they can be utilized in a truncated series to represent the deflection 
w of the plate: 
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To satisfy the motion equations (1) we propose to present the in-plane displacements as 
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In these expressions functions / 011,vu  are solution of system  
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supplemented by the following boundary conditions: 
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Functions / 0ijij vu ,  are solutions of the following inhomogeneous system: 
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They satisfy the following boundary conditions:  
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Right hand side of the system (5) depends on the eigenfunctions wi  and can be written as follows: 
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Functions in the right hand side of the boundary conditions (6) are defined as 
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To determine the functions  u1, v1, uij, vij  we will use the R-function method (RFM).  
Substituting expressions (3),(4) in equation (2) and applying Bubnov-Galerkin method to the 

resulting equation, we will obtain a system of ordinary differential equations (ODEs): 
 

/ 0 / 0 / 0 / 0 / 0 / 0 / 0 0cos
1 1 1

)(

1

)(2 �##
%

!
""
$

 
6�2�����D��� ����

� � ��

n

i

n

j
kji

n

k

m
ijk

n

k
k

m
ktmmmm tytytytytptytyty ,   (7) 

 
where / 0nm ,1� . The coefficients in this system of ODEs are defined by the formulas: 
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Let us consider in detail the one-mode approximation:  
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In this case the system of equations (7) is reduced to one equation 
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Equation (8) uses the following notations: 
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Equation (8) can be transformed  to the known form  [3]: 
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where ,2kpt ���2  2/1 D�D . 

The main task of investigation of parametric vibrations is finding instability areas and 
studying behavior of plate after loss of stability. To investigate the stability [3], it is enough to 
consider the linearized equation ( 0�6 ): it is well-studied Mathieu equation and its main instability 
domain is situated near L��� 2  and bounded by curves [3]: 
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after the loss of stability, according to [3], has the form: 
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3. Parametric vibrations of a plate with circular cutouts  

Now we will use the proposed method to investigate parametric vibrations of a three-layered 
plate with circular cutouts that is shown in Fig.1. Plate is subjected to a load along the sides parallel to 
axis OX. 
 

  
Figure 1 

 
Numerical results are obtained for the following mechanical parameters (glass-epoxy 

,3/ 21 �EE  ,6.0/ 2 �EG  25.0/ 2121 �?�? EE ) and geometric parameters ( ,1/ �ab  ,5.0/2 �ar  
01.0/ �ah ). The boundary of the plate is simply supported.  

Table 1 presents the values of the frequency and critical load parameters 
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Table 1. Frequency and critical load parameters  

krp  7  

 p0/pkr 
0.25 0.5 0.75 

9.45 46.68 38.33 27.29 
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Results of the influence analysis of static load component on the location of the instability domains 
and amplitude-frequency relations are presented in Fig. 2,3.  The load increase results in the shift of 
domains to lower values of excitation frequency. The value of the static component of load affects the 
slope of the curves.  
 

 
Figure 2    Figure 3 

 
Conclusions  

The paper presents an approach for studying the parametric vibrations of the laminated plates with 
symmetric structure and constant thickness. Applying multi-mode approximation enables 
investigating the parametric resonances of the plate near ,..2,1,2 ���� ii  and mutual influence of the 
vibration modes. The method is based on the theory of R-functions, which makes this method useful 
for plates of complex geometric shape and various boundary conditions. 
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