2022 № 1 Електротехніка і Електромеханіка

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65913

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Power quality improvement using ultra capacitor based dynamic voltage restorer with real twisting sliding mode control
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Shah, Muhammad Shahzaib; Mahmood, Tahir; Ullah, Mian Farhan
    Power quality is a major problem in today's power system, since it may have an impact on customers and utilities. Problem. Power quality is important issue of financial consequences for utilities, their consumers and load apparatus vendors. Voltage sag/swell are the most significant and usually occurring power quality issues in a secondary distribution system for sensitive loads. Goal. Dynamic voltage restorer is a fast, flexible, effective and dynamic custom power device can be used to compensate voltage sag/swell with integration of energy storage. Ultra capacitors have ideal properties of great power density and low energy density for elimination of voltage sag/swell. Their performance is mostly determined by the control strategy established for switching of voltage source converters. Originality. In this research, a strategy for the voltage source converter of dynamic voltage restorer based on the real twisting sliding mode control and ultra capacitor is developed to correct the fault that successfully eliminates the impacts of voltage sag/swell. Methodology. Ultra capacitor along with real twisting sliding mode control gives the more robustness and faster response, with also increasing the compensation time of the dynamic voltage restorer. Testing environment. To evaluate the performance of the proposed control approach, the MATLAB / Simulink SimPower System tool box is employed. Practical values. According to Simulation results clearly shows that the ultra capacitor along with real twisting sliding mode control effectively eliminate the voltage sag/swell in a very short time of 2 ms as compared to IEEE standards that is 20 ms, with less than 5 % total harmonic distortion for sensitive loads as per Information Technology Industry Council Curve and SEMI-F-47 Standards.