2022 № 1 Електротехніка і Електромеханіка
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65913
Переглянути
2 результатів
Результати пошуку
Документ Performance enhancement of direct torque control induction motor drive using space vector modulation strategy(Національний технічний університет "Харківський політехнічний інститут", 2022) Moussaoui, LeilaThe main objective of this work is to demonstrate the advantages brought by the use of space vector modulation technique in the direct torque control of the induction motor. To achieve this purpose, two different direct torque control approaches (with space vector modulation) are proposed and studied from a comparative aspect with each other and with the conventional direct torque control. The novelty of this work consists in the employment of an Integral-Proportional (IP) speed controller in the two proposed direct torque control approaches and a more in-depth evaluation for their performance mainly the switching frequency of inverter semiconductor components and motor torque ripples. Methods. Two different direct torque control approaches that use the space vector modulation strategy and/or fuzzy-logic control, are described in detail and simulated with IP speed controller. The simulation experiments are carried out using Matlab/Simulink software and/or fuzzy-logic tools. Results. Practical value. Comparison results show that the two proposed direct torque control structures (with space vector modulation) exhibit a large reduction in torque ripples and can also avoid random variation problem of switching frequency (over a wide range of speed or torque control). On the other hand, the use of IP speed regulator ensured good dynamic performance for the drive system as well as considerably minimized peak overshoot in the speed response. Practically all of these benefits are achieved while retaining the simplicity and the best dynamic characteristics of the classical direct torque control, especially with the modified direct torque control approach in which the design or implementation requires minimal computational effort.Документ Power quality improvement in distribution system based on dynamic voltage restorer using PI tuned fuzzy logic controller(Національний технічний університет "Харківський політехнічний інститут", 2022) Gopal Reddy, Sanepalle; Ganapathy, Somaskandan; Manikandan, ManiThis article proposes a new control strategy for Dynamic Voltage Restorer (DVR) in utility grid for distribution system. The proposed DVR using PI tuned fuzzy logic scheme is based on replacement of conventional DVR and voltage sag compensation in distribution system network. The novelty of the proposed work consists in presenting an enhanced PI tuned fuzzy logic algorithm to control efficiently the dynamic voltage restorer when voltage sag is suddenly occurred. Methods. The proposed algorithm which provides sophisticated and cost-effective solution for power quality problems. Our strategy is based on tuned fuzzy control of reactive powers and also closed loop for harmonic reduction in distribution system. The proposed control technique strategy is validated using MATLAB / Simulink software to analysis the working performances. Results. The results obtained clearly show that DVR using PI tuned fuzzy logic have good performances (sag compensation, harmonic reduction) compared to conventional DVR. Originality. Compensation of voltage sag/ swell in distribution for reactive power and current harmonic reduction by using DVR based PI tuned fuzzy logic controller. Practical value. The work concerns the comparative study and the application of DVR based on PI tuned fuzzy techniques to achieve a good performance control system of the distribution system. This article presents a comparative study between the conventional DVR control and PI tuned fuzzy DVR control. The strategy based on the use of a PI tuned fuzzy controller algorithm for the control of the continuous voltage sag and harmonic for the distribution network-linear as well as non-linear loads in efficient manner. The study is validated by the simulation results based on MATLAB / Simulink software.