05.17.11 "Технологія тугоплавких неметалічних матеріалів"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17839
Переглянути
Документ Керамічні матеріали на основі карбіду кремнію для атомної енергетики(Національний технічний університет "Харківський політехнічний інститут", 2021) Лобач, Костянтин В'ячеславовичДисертація на здобуття наукового ступеня кандидата (доктора філософії) технічних наук зі спеціальності 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2021 р. Дисертаційна робота спрямована на вдосконалення наявних і впровадження нових інноваційних технологій і матеріалів які б дозволили реакторам атомних станцій станути більш безпечними навіть у разі виникнення аварійних ситуацій. Робота присвячена розробці технології отримання безпористого SiC-матеріалу з підвищеним коефіцієнтом тріщиностійкості та поліпшеною корозійною стійкістю в реакторних умовах, який може бути використаний як матеріал SiC-матриці в SiC/SiC композитах для виготовлення оболонок тепловиділяючих елементів (ТВЕЛ), а також у якості механічно міцного і стійкого до γ-опроміненню захисного матеріалу для контейнерів високоактивних відходів і відпрацьованого ядерного палива. Актуальність теми та вагомість результатів дисертації підтверджується тим, що вона виконувалась в межах науково-дослідної тематики та проєктів Національного наукового центру "Харківський фізико-технічний інститут" НАН України. Достовірність та обґрунтованість одержаних результатів дисертаційної роботи досягається використанням сучасного обладнання; стандартних методик визначення властивостей; аналізом отриманих експериментальних даних та їх систематизацією. В роботі методом високошвидкісного гарячого пресування отримано дослідні зразки для вивчення формування безпористої структури в чистій (без добавок) SiC-кераміці, в діапазоні температур (Т = 1850 – 2100)°С, часу витримки (t = 10 – 45) хвилин, тиску P = 40 МПа та швидкості нагрівання V = 200°С/хв. Встановлено, що SiC-кераміка, яка отримана при температурі спікання Т = 2050 °С, тиску Р = 40 МПа, швидкості V = 200 ºC/хв та часі витримки під тиском t = 30 хвилин сформована з безпористої, монолітної та однорідної структури з ознаками крихкого руйнування, має високу щільність (до 99,4 % від теоретичної), твердість – 27,3±0,5 ГПа та коефіцієнт тріщиностійкості 4,3 MPa∙м½. Розглянута можливість поліпшення коефіцієнту тріщиностійкості шляхом введення невеликої кількості добавок та вивчення їхнього впливу на фізико-механічні властивості SiC-кераміки. Досліджено вплив добавок Cr (у діапазоні від 0,3 до 1,2 мас. %) на механічні властивості SiC-кераміки. Встановлена оптимальна кількість добавки хрому (0,5 мас. %), за якої SiC має найкраще співвідношення значень тріщиностійкості й мікротвердості (HV/K1c = 4,5). Показано, що додавання Cr призводе до підвищення тріщиностійкості на (25 – 30) % (K1c = 6,2 MПa∙м½), в порівнянні з SiC без добавок, при збереженні високого рівня твердості зі значенням 28,0 ГПа. Досліджено формування та розподіл Cr у структурі SiC. Вивчено механізми формування дрібнодисперсних карбідних сполук (CrxCy), які сприяють виникненню вторинних фаз та підвищенню тріщиностійкості матеріалів. Отримані результати можуть бути враховані та значно вплинути на вибір матеріалів та технологію виробництва SiC-матриці в SiC/SiC композитах для виготовлення оболонок ТВЕЛів водо-водяних ядерних реакторів, оскільки існує проблема виготовлення тонкостінних трубок (оболонок) з крихкої кераміки SiC, яка має низькі значення коефіцієнта тріщиностійкості. Досліджено можливість підвищення корозійної стійкості SiC-кераміки шляхом введення добавок Cr в умовах, що імітують внутрішнє середовище реактору ВВЕР-1000. Вивчені механізми впливу Cr на особливості корозійного процесу. Зафіксовано приріст маси SiC до 3,27 мг/см² на початку корозійних випробуваннях, що покращує корозійну стійкість SiC у гідротермальних умовах. Встановлено, що введення 0,5 мас. % Cr призводить до формування структури поверхні SiC з поліпшеною корозійною стійкістю і є перспективним технологічним рішенням для досягнення необхідного рівня корозійної стійкості SiC у реакторних умовах. Проведені радіаційні випробування керамічних зразків SiC(0,5%Cr), за допомогою гальмівного випромінювання γ-квантів до поглиненої дози 2·10⁶ Гр, що відповідає дозовому навантаженню на матеріал контейнера при зберіганні радіоактивних відходів протягом 300 років, відповідно до вимог МАГАТЕ. Показано, що введення 0,5 мас. % Cr не призводить до зниження структурної цілісності та механічної міцності кераміки SiC після γ-опромінення до поглиненої дози 2·10⁶ Гр. Експериментально встановлено, що композит SiC(0,5Cr) може бути використаний як матеріал контейнеру для безпечного захоронення ВАВ та ВЯП.Документ Керамічні матеріали на основі карбіду кремнію для атомної енергетики(Національний технічний університет "Харківський політехнічний інститут", 2021) Лобач, Костянтин В'ячеславовичДисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) зі спеціальності 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2021 р. Дисертаційна робота присвячена створенню композиційної кераміки на основі SiC з поліпшеними фізико-механічними властивостями та корозійною стійкістю шляхом формування безпористої структури методом ВГП та введення добавок для застосування в атомній енергетиці. Проаналізовано вплив різних добавок на фізико-механічні властивості SiC. Встановлено, що введення 0,5 мас. % Cr в SiC призводить до підвищення коефіцієнта тріщиностійкості на (25 – 30) %. Показано формування та розподіл Cr у структурі SiC та описано механізми його впливу на механічні властивості. У роботі наведено механічні характеристики SiC з добавками Cr у діапазоні від 0,3 до 1,2 мас. %. У роботі вивчені механізми впливу Cr на особливості корозійного процесу. Зафіксовано приріст маси SiC до 3,27 мг/см² на початку корозійних випробуваннях, що покращує корозійну стійкість SiC. Встановлено, що введення 0,5 мас. % Cr не призводить до зниження структурної цілісності та механічної міцності кераміки SiC після γ-опромінення до поглиненої дози 2·10⁶ Гр. Показана принципова можливість використання отриманого керамічного композиту SiC(0,5%Сr), як матеріалу для контейнерів ВАВ і ВЯП українських АЕС.