05.17.11 "Технологія тугоплавких неметалічних матеріалів"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17839
Переглянути
3 результатів
Результати пошуку
Документ Теоретичні основи технології керамічних матеріалів на основі системи RO – Al₂O₃ – SiO₂ для авіакосмічної техніки(2024) Кривобок, Руслан ВікторовичДисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.17.11 «Технологія тугоплавких неметалічних матеріалів» (161 – Хімічні технології та інженерія). – Національний технічний університет «Харківський політехнічний інститут», Харків, 2024. Дисертацію присвячено розробленню теоретичних основ і технології радіопрозорих керамічних матеріалів на основі композицій алюмосилікатних систем, за рахунок спрямованого синтезу цільових фаз, здатних забезпечити комплекс необхідних електрофізичних, електродинамічних і техніко-експлуатаційних характеристик функціональної кераміки. The dissertation for the degree of Doctor of Technical Sciences in the specialty 05.17.11 "Technology of refractory non-metallic materials" (161 – Chemical Technologies and Engineering). – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2024. The dissertation is dedicated to the development of theoretical foundations and technology of radio-transparent ceramic materials based on compositions of aluminosilicate systems through the targeted synthesis of target phases capable of providing a set of necessary electrophysical, electrodynamic, and technical and operational characteristics of functional ceramics.Документ Конструкційно-теплоізоляційні керамічні матеріали з організованою поровою структурою для енергозберігаючого будівництва(Національний технічний університет "Харківський політехнічний інститут", 2021) Галушка, Ярослав ОлеговичДисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів (161 – Хімічні технології та інженерія). Національний технічний університет "Харківський політехнічний інститут", Харків, 2021. Дисертацію присвячено розробці технології теплоефективної конструкційно-теплоізоляційної будівельної кераміки з покращеними теплотехнічними і механічними властивостями на основі цегельно-черепичної сировини невисокої технологічної якості та компонентів техногенного походження. В роботі здійснено огляд та аналіз сучасних науково-технологічних досягнень в галузі створення теплоефективної кераміки для енергозберігаючого будівництва. Надана порівняльна характеристика сучасних конструкційно-теплоізоляційних матеріалів для зведення теплоізоляційної оболонки будівель, показані переваги керамічних матеріалів при їх використанні в одношарових стінових конструкціях. Розглянуті особливості технологій конструкційно-теплоізоляційної кераміки та фактори, що визначають рівень експлуатаційних властивостей таких матеріалів. Проаналізований взаємозв'язок між структурно-фазовим складом і властивостями конструкційно-теплоізоляційної стінової кераміки. Наведені відомості про використані сировинні матеріали, методи та методики теоретичних та експериментальних досліджень, застосованих в роботі. Проведені теоретичні дослідження, спрямовані на прогнозування теплозахисних властивостей моделей крупнорозмірних поризованих і непоризованих виробів різної пустотності. З використанням імітаційного 3D-моделювання проведений порівняльний аналіз механічних властивостей моделей, вивчений вплив геометричних параметрів пористої структури керамічного матеріалів на їх механічні властивості. Показані переваги моделі меншої пустотності з поризованою керамічною стінкою з точки зору кращої теплопровідності, а також переваги структурної моделі зі сферичними порами з точки зору кращої механічної міцності. Проведені системні дослідження полімінеральних глин з відмінним хіміко-мінеральним складом як типових представників сировинної бази цегельно-черепичної галузі. Вивчені процеси фазоутворення цих порід у взаємозв'язку з характеристиками їх спікання і властивостями. Показано, що для посилення механічної міцності керамічних матеріалів доцільно використовувати середньоспікливі породи, однак можливо застосовувати і неспікливі породи з підвищеним вмістом карбонатних мінералів, які є джерелом синтезу структурозмінюючих кристалічних фаз при випалі. Досліджений взаємозв'язок "технологія-структура-властивості" керамічних матеріалів, отриманих за різними механізмами поризації. Визначені добавки, здатні утворювати підвищену пористість матеріалів при мінімальному рівні їх знеміцнення. Встановлені корелятивні зв'язки між структурними показниками, які вказують на необхідність організації пористих структур з дрібними замкненими сферичними порами як найменш дефектних і міцних. Вивчені різні види золоматеріалів як пороутворювачів при виготовленні конструкційно-теплоізоляційної кераміки з поризованою стінкою. Встановлена доцільність та ефективність використання техногенних золосфер, які дозволяють організувати високопористу структуру (в середньому 53 %) з переважанням пор закритого типу (30 %). Проведені дослідження в напрямку опрацювання способів зміцнення керамічної основи поризованих керамічних матеріалів, отримуваних на основі неспікливих суглинків. Показана доцільність використання глинистих добавок, зокрема керамзитової глини в кількості 10 – 20 %, для покращення пластичних властивостей мас, їх спікання та механічної міцності керамічної матриці поризованих матеріалів. Досліджені металургійні шлаки (доменні та ваграночний) як техногенні добавки структурозміцнюючої дії, які є джерелом синтезу кристалічних фаз анортиту, діопсиду та воластоніту при випалі матеріалів. Визначений позитивний вплив ваграночного шлаку на зміцнення керамічних матеріалів (на 70 %). Проведені дослідження по розробці оптимальних рецептурно-технологічних параметрів отримання поризованої конструкційно-теплоізоляційної будівельної кераміки на основі неспікливого суглинку і техногенних компонентів. Визначена область раціональних складів керамічних мас, оптимальний склад маси (56 % суглинку, 14 % керамзитової глини, 10 % золосфер і 20 % ваграночного шлаку), температура випалу, а також ступінь подрібнення сировинних компонентів, які в комплексі за температури випалу 970 °С дозволяють отримати матеріали з середньою густиною 1380 кг/м³ і межею міцності при стиску 20,2 МПа. Опрацьовані технологічні прийоми по зміцненню контактної зони "керамічна матриця-золосфера" шляхом попередньої обробки золосфер для забезпечення їх адгезії до інших компонентів маси. Встановлено, що для покращення міцності необхідно забезпечувати максимально можливу взаємодією між поризатором і масою, що досягається використанням попередньої обробки золосфер керамзитовим шлікером, який сприяє рідкофазному спіканню золосфери з масою під час випалу. Досліджені технологічні властивості керамічної маси оптимального складу, (пластична міцність, чутливість до сушки, дилатометричні температури спікання), на підставі чого визначені режими сушки та випалу напівфабрикатів. Розроблена технологічна схема виробництва поризованої конструкційно-теплоізоляційної кераміки, яка передбачає скорочений цикл сушки (24 год) і випалу (44 год), на основі якої можна отримати поризовану конструкційно-теплоізоляційну кераміку з маркою за механічною міцністю М 175, коефіцієнтом теплопровідності 0,19 Вт/(м·К) і густиною 850 кг/м³ (при 40 % пустотності). Прогнозований економічний ефект від скорочення випалу та відповідної економії природного газу складає 3656391 грн/рік при річній продуктивності підприємства 33 млн ум. штук виробів. Наукова новизна результатів роботи. Теоретично обґрунтована та експериментально підтверджена можливість отримання конструкційно-теплоізоляційних керамічних матеріалів із заданою пористою структурою збільшеної теплової ефективності та механічної міцності на основі недефіцитної цегельно-черепичної сировини та техногенних компонентів. Вперше: - на основі 3D-моделювання експлуатаційної поведінки пустотілих керамічних виробів з пористим та щільним каркасом визначені технологічні принципи отримання конструкційно-теплоізоляційної будівельної кераміки з покращеними теплозахисними і деформаційно-міцнісними характеристиками, які полягають у зниженні пустотності виробів, організації раціональної пористої структури керамічного каркасу зі сферичними порами та зміцненні локальних зон "керамічна матрицяпора" як найбільш уразливих ділянок структури; - на основі системного дослідження процесів спікання і фазоутворення полімінеральних глинистих порід доведена можливість використання неспікливих суглинків в масах для отримання поризованої будівельної кераміки з їх модифікацією керамзитовою глиною (10 – 20 мас. %), яка забезпечує необхідну пластичну консистенцію глиномас (коефіцієнт консистенції 0 – 0,25) і суттєве зміцнення матеріалів (максимально на 112 %) залежно від кількості глини і температури випалу (920 – 980 °С) за рахунок кращої спікливості мас; - встановлені закономірності структуроутворення в поризованих керамічних матеріалах з використанням пороутворюючих добавок з різними механізмами поризації у взаємозв'язку з технологічними параметрами їх отримання та властивостями. Вони полягають в тому, що за однакового рівня загальної пористості (40 %) механічна міцність структур визначається їх однорідністю та долею закритих пор, оптимальне поєднання яких можливо при використанні тонкодисперсних органо-мінеральних поризаторів, які формують найбільш міцні структури з глобулярними і сферичними порами та коефіцієнтом анізотропії 0,8 – 1,0; - визначена ефективність використання висококальцієвого ваграночного шлаку в масах для отримання керамічних матеріалів підвищеної міцності як функціонального компонента, який при випалі матеріалів за температур 970 – 1000 °С є джерелом синтезу новоутворень з подовженою неізометричною формою кристалів (анортит, діопсид, воластоніт), які зміцнюють структуру, що покращує межу міцності при стиску матеріалів на 70 %. Практичне значення отриманих результатів для промисловості будівельних матеріалів полягає у розробці ресурсоощадної технології пористо-пустотілих керамічних будівельних виробів зниженої пустотності з покращеними теплотехнічними та експлуатаційними характеристиками на основі неспікливої глинистої сировини і техногенних добавок. Проведені в умовах ТОВ "Плінфа" (м. Харків) лабораторно-промислові випробовування керамічної маси оптимального складу і запропонованих технологічних рішень підтвердили практичну цінність розробок, впровадження яких у промислове виробництво дозволить отримати економічний ефект за рахунок суттєвого зниження витрат природного газу на рік (414556,8 м3) для підприємства середньої продуктивності (33 млн штук умовних виробів на рік). Результати дисертаційної роботи впроваджено у навчальний процес кафедри технології кераміки, вогнетривів, скла та емалей НТУ "ХПІ" при викладанні дисциплін: "Інноваційні матеріали і технології в технологіях тугоплавких неметалевих силікатних матеріалів (ТНСМ)", "Хімічні технології будівельних матеріалів для медицини, техніки і будівництва", "Виробництво кераміки та вогнетривів", "Ресурсо- та енергозбереження в технології ТНСМ".Документ Конструкційно-теплоізоляційні керамічні матеріали з організованою поровою структурою для енергозберігаючого будівництва(Національний технічний університет "Харківський політехнічний інститут", 2021) Галушка, Ярослав ОлеговичДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. Національний технічний університет "Харківський політехнічний інститут", Харків, 2021. Дисертацію присвячено розробці технології поризованої конструкційно-теплоізоляційної кераміки з покращеними теплотехнічними та механічними характеристиками на основі недефіцитної глинистої сировини та функціональних добавок техногенного походження. Встановлені закономірності формування пористої структури керамічних матеріалів у взаємозв'язку з технологічними параметрами їх отримання і властивостями, визначена доцільність організації структур зі сферичними порами як найбільш міцних. Визначені шляхи досягнення низької густини і покращеної міцності матеріалів, які полягають у використанні золосфер і модифікації мас глинистими та структурозміцнюючими добавками. Розроблені технологічні параметри виробництва будівельної кераміки на основі неспікливого суглинку, керамзитової глини, золосфер і ваграночного шлаку, що дозволяють за температури 970 °С отримати вироби з поризованою стінкою і пустотністю 40 %, які характеризуються марками за міцністю М175 і морозостійкістю F50, коефіцієнтом теплопровідності 0,19 Вт/(м·К), густиною 850 кг/м³ і відносяться до виробів високої ефективності.