Вісник № 39

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/33095

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Коливання квадратично-нелінійного осцилятора, спричинені імпульсним навантаженням
    (НТУ "ХПІ", 2017) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович
    Розглянуто механічні коливання нелінійного осцилятора, у якого відновлююча сила пропорційна квадрату деформації пружини. Рух спричинений або миттєво прикладеною силою сталої величини або прямокутним силовим імпульсом скінченної тривалості. Побудовано два варіанти аналітичного розв’язку нелінійної задачі Коші для неоднорідного диференціального рівняння другого порядку. В першому переміщення осцилятора у часі виражено через еліптичний косинус Якобі, що дає можливість обчислювати їх за допомогою відомих таблиць. У другому для розрахунку переміщень, задіяно Ateb-синус. Запропоновано апроксимації, які з похибкою меншою одного відсотка, подають Ateb-синус в елементарних функціях. Показано, що коефіцієнт динамічності у розглянутого осцилятора менший двох. Він залежить від тривалості дії прямокутного силового імпульсу. Знайдена тривалість дії сили, коли досягається максимальний ефект розгойдування вільних коливань розвантаженого осцилятора. Вона залежить не тільки від параметрів осцилятора, а й від значення прикладеної сили, що не властиво лінійним системам. Наведено приклади розрахунків та відповідні графіки.
  • Ескіз
    Документ
    Про коливання осцилятора з кубічно-нелінійною жорсткістю
    (НТУ "ХПІ", 2017) Ольшанський, Василь Павлович; Бурлака, Володимир Васильович; Сліпченко, Максим Володимирович; Малець, Ольга Миколаївна
    Розглянуто вільні коливання системи з одним ступенем вільності за умови, що відновлююча сила пружини пропорційна кубу її деформації. Задіяно дві форми аналітичного розв’язку нелінійного диференціального рівняння. В першій формі розв’язок виражено через еліптичний косинус, а в другий – через періодичні Ateb-функції. Складено таблиці для обчислень значень цих функцій і побудовано в безрозмірних координатах графіки, які спрощують розрахунки переміщень осцилятора у часі. Виведено формули для обчислення періодів коливань при наданні осцилятору початкового відхилення від положення рівноваги або початкової швидкості (миттєвого імпульса) в цьому положенні. Наведено приклади розрахунків з використанням відомих таблиць неповного еліптичного інтеграла першого роду та з використанням складеної таблиці періодичних Ateb-функцій.