Вісник № 01. Актуальні проблеми розвитку українського суспільства
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/46777
Переглянути
Документ Метод автоматичного визначення семантично близьких фрагментів новинних текстів(Національний технічний університет "Харківський політехнічний інститут", 2019) Петрасова, Світлана Валентинівна; Галкіна, Яна Романівна; Мануйлов, Ілля Олександрович; Бородіна, Олександра Русланівна; Швець, Софія ІгорівнаСкладність семантичного аналізу текстової інформації, що міститься в новинних повідомленнях, визначається багатозначністю і синонімічністю, які властиві мові на всіх рівнях її представлення, що, перш за все, впливає на визначення смислово ї близькості мовних одиниць. Виявлення семантично близьких фрагментів текстів або перефразувань є актуальною проблемою у таких наукових напрямках як семантичний пошук інформації, видобування інформації, машинний переклад, визначення порушень авторських прав і т.п. , крім того широко використовується при рерайтингу. У статті проаналізовано основні проблеми рерайтинга, зокрема перефразування синтаксичних одиниць тексту зі збереженням смислового навантаження. Розглянуто сучасні методи визначення семантичної близькості слів, вказано основні переваги та недоліки. Запропоновано метод автоматичного виявлення синонімічних фрагментів новинних текстів на основі використання WordNet та розроблених синтаксичних правил, які зберігають інформацію про граматичні характеристики слів. Перевагою даного методу є те, що аналізується як граматична структура мови, так і смисл слів. Досліджуваний корпус представлено новинними текстами інформаційного агентства Reuters, служб CNN і BBC World News. Запропонований метод ідентифікації семантично зв’язних фрагментів тексту дозволяє виявити спільний інформаційний простір актуальних новин та може використовуватися для ефективного визначення близьких за змістом текстів в інформаційно-пошукових, експертних, аналітичних інформаційних системах. Вирішення завдання автоматичного визначення семантичної близькості може застосовуватися при автоматизованій побудові онтологій по тексту, для розширення існуючих і створення нових тезаурусів.