2023 № 1 Інтегровані технології та енергозбереження
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/68834
Переглянути
8 результатів
Результати пошуку
Документ Spatial interpretation of A. Einstein's energy equation(Національний технічний університет "Харківський політехнічний інститут", 2023) Anipko, Oleg B.It is known that A. Einstein's theory is well applicable for macro objects. However, for micro systems it does not give valid results. The totality of all physical processes is described by four interrelated components – energy, substance (matter), space, time. There is no space component in the structure of the energy equation. Based on the unity of physical nature, it is of interest to create such a theory that was equally applicable to both macro and micro systems. An interpretation of this equation is proposed which contains the volume of space with a certain mass and energy. The resulting expression containing the specific energy of space, and the density of matter in this space, allows you to combine energy, space, time and matter into a single pattern. The directions of perspective researches are determined using the developed interpretation of the energy equation.Документ Дослідження водогрійного котла системи централізованого теплопостачання як об'єкта керування(Національний технічний університет "Харківський політехнічний інститут", 2023) Снурніков, Д. В.; Красніков, Ігор Леонідович; Бабіченко, Анатолій КостянтиновичПроведено аналіз умов функціонування типової системи централізованого теплопостачання великого міста, зокрема водогрійного газового котла. Показано, що котел, як основний об'єкт керування, працює в умовах постійної зміни зовнішнього теплового навантаження, що обумовлює внаслідок їх випадкового характеру дії низку невизначеностей. Обґрунтована доцільність математичного опису невизначеностей з використанням стохастичного методу, як найбільш апробованого в практичних умовах. За результатами проведеного пасивного експерименту на водогрійному газовому котлі КВГ-6,5-150 системи централізованого теплопостачання одного з районів м. Харкова був отриманий масив погодинних експериментальних даних, що відображають основні показники роботи водогрійного котла. В результаті обробки даних методом найменших квадратів отримана математична модель котла у вигляді лінійного рівняння регресії, яке відображає зв'язок температури теплоносія на виході котла із температурою навколишнього повітря, температурою теплоносія на вході в котел і з витратами природного газу і теплоносія в котел. Виконана перевірка отриманого рівняння регресії за статистичним критерієм Стьюдента, яка підтвердила значущість усіх коефіцієнтів регресійної моделі. Проведена оцінка щодо практичної значущості рівняння множинної регресії за допомогою коефіцієнту детермінації. Якість рівняння множинної регресії в цілому оцінювалась за допомогою F-критерію Фішера. Так як паралельні опити не проводились, то замість перевірки адекватності проводилась оцінка якості апроксимації дослідних точок прийнятим рівнянням регресії, тобто перевірялось, чи має сенс це рівняння. Така перевірка проводилась порівнянням залишкової дисперсії та дисперсії відносно середнього. Результати розрахунків показали, що значення критерія детермінації значно перевищує допустиме значення, а фактичне значення критерію Фішера суттєво перевищує табличне. Отримані показники дозволили зробити висновок, що зв'язок між змінними в регресійній моделі суттєвий, а запропонований стохастичний метод та отримане рівняння множинної лінійної регресії можна використовувати для прийняття рішень в процесі синтезу технічної структури комп'ютерно-інтегрованої системи керування об'єктами централізованої системи теплопостачання.Документ Метод чисельного моделювання у слабопроникних анізотропних пластах з метою збільшення нафтовіддачі(Національний технічний університет "Харківський політехнічний інститут", 2023) Лубков, Михайло Валерійович; Мосійчук, К. О.Об'єктом дослідження є фільтраційний процес у слабопроникних анізотропних пластах (САП). Робота присвячена оцінюванню процесу виснаження нафтоносного пласта, використовуючи за критерій розподіл пластового тиску поблизу системи видобувних та нагнітальних свердловин з урахуванням анізотропії проникності нафтової фази. В ході дослідження представлений комбінований метод чисельного моделювання на основі скінченно-елементного та методу кінцевих різниць, який дозволяє визначити значення пластового тиску в довільній точці розрахункової області. Запропонований у даній роботі скінченно-елементно-різницевий метод, який дає змогу поєднувати переваги скінченно-елементного методу та методу скінченних різниць, для розв'язання нестаціонарної задачі п'єзопровідності з огляду на неоднорідний розподіл різних фільтраційних параметрів усередині деформованого пласта та на його межах дає змогу адекватно обчислити розподіл пластового тиску в реальних умовах експлуатації свердловин, що дає ряд переваг порівнюючи з існуючими методами. Встановлено, що вплив проникності нафтової фази у зсувному напрямку домінує над впливом проникності у осьових напрямках. Це пов'язано з тим, що з отриманої інформації, для ефективного використання анізотропних слабопроникних пластів необхідно розміщувати видобувні та нагнітальні свердловини в областях з відносно низькою анізотропією проникності пласта, особливо уникати місць із наявністю зсувної проникності пласта. Таке важливе розташування свердловин, щоб з однієї сторони не відбувалось блокування нафти з боку пониженої проникності, а з іншої сторони не відбувалось швидке виснаження пласта з боку підвищеної проникності та не припинявся взаємний обмін між видобувною та нагнітальною свердловинами. При розміщенні системи видобувних та нагнітальних свердловин у анізотропних пластах нафтового родовища необхідно проведення системного аналізу навколишньої анізотропії пластів з метою такого їх розміщення, яка б забезпечувала ефективну динаміку процесів фільтрації навколо цих свердловин та збільшення нафотвіддачі.Документ Перспективи використання альтернативних видів палива для опалення регенеративних повітронагрівачів доменних печей(Національний технічний університет "Харківський політехнічний інститут", 2023) Кошельнік, Олександр Вадимович; Гойсан, С. Б.; Пугачова, Тетяна Миколаївна; Круглякова, Ольга Володимирівна; Павлова, Вікторія ГеннадіївнаПроаналізовано можливість використання штучного газоподібного палива – звалищного газу – для опалення регенеративних повітронагрівачів печей доменного виробництва. Підвищення температури доменного дуття є одним з найбільш ефективних способів економії металургійного коксу та збільшення продуктивності доменних печей. Для цього в якості палива для регенеративних теплообмінників використовується суміш доменного та коксового газів. Враховуючи існуючий сьогодні дефіцит коксового газу, в якості висококалорійної добавки пропонується використання звалищного газу, основним горючим елементом якого є метан. Проведені розрахунки горіння суміші газоподібних палив в трьох комбінаціях: доменних газ, коксо-доменна суміш та суміш доменного та звалищного газів. Розглядалася можливість підвищення температури гарячого дуття до 1250 °С в системі повітропостачання доменної печі об'ємом 1033 м³ . Для досягнення заданої температури необхідний рівень адіабатної температури горіння повинен складати 1423 °С, а температури димових газів під куполом – 1300 °С. Даний рівень температури неможливо досягнути при використанні тільки доменного газу, тому розглядалися два варіанти: використання коксо-доменної суміші з вмістом коксового газу 6,3 % та одночасним нагріванням повітря горіння до 180 °С за рахунок теплоти відхідних газів доменних повітронагрівачів, а також спалювання суміші доменного та звалищного газів з нагріванням повітря горіння до 180 °С (вміст звалищного газу при цьому – 7,6 %). Витрата суміші палив в останньому випадку складає 68523 м³ /год, тобто необхідна кількість звалищного газу дорівнює 5208 м³ /год. Обсяги виходу газу на звалищах великих міст складають 5–10 млн.м³ /рік, що є меншим ніж необхідна кількість біогазу для опалення повітронагрівача. Тому має сенс розглядати для досягнення необхідного рівня температур використання суміші трьох газів – доменного, кокосового та звалищного у відповідних співвідношеннях. Використання звалищного газу також сприяє вирішенню важливої екологічної проблеми забруднення земель та атмосфери при накопичування твердих побутових відходів.Документ Інтеграція роботи теплоенергетичної установки(Національний технічний університет "Харківський політехнічний інститут", 2023) Селіхов, Юрій Анатолійович ; Горбунов, Костянтин ОлександровичОсновним мотивом прискореного розвитку відновлюваної енергетики в Європі, США та багатьох інших країнах є прагнення держав до енергетичної незалежності та екологічної безпеки. Поштовхом до використання нових технологій у застосуванні енергії нетрадиційних джерел послужили два фактори: енергетична криза початку 70-х років та підвищення вимог до охорони навколишнього середовища. Досвід, накопичений різними країнами у використанні електричних нагрівників, теплових насосів та вітроелектрогенераторів, демонструє високі можливості простого перетворення цих видів енергії на теплову енергію та електроенергію, які можуть успішно використовуватися для постачання: електроенергії, гарячою води, гарячого повітря, опалення у приміщеннях державних та приватних будівель, а також забезпеченню різноманітних технологічних та побутових потреб не тільки в різних галузях промисловості, а й у тому числі на підприємствах агропромислового комплексу України. У цій роботі авторами пропонується розроблена та впроваджена вдосконалена автоматизована теплоенергетична установка для постачання: електроенергією, гарячою водою, гарячим повітрям та опаленням приватного домоволодіння. Для вирішення вищевказаних завдань була розроблена схема попереднього нагріву теплоносія за рахунок застосування: електричного водонагрівника з тепловою потужністю 54 кВт, теплового насоса та вітроелектрогенератора з електричною потужністю 50 кВт, який виробляє електроенергію для роботи всього електроустаткування в приватному домоволодінні та акумуляторів електроенергії та теплоти. Система автоматизації дозволяє керувати установкою без втручання людини. Робота цієї установки дає змогу економити органічне паливо, яке пішло б на нагрівання теплоносія до необхідної температури в котельні малої потужності.Документ Теплова інтеграція потоків процесу розділення гетероазеотропної суміші фурфурол-вода на двох відгінних колонах(Національний технічний університет "Харківський політехнічний інститут", 2023) Бабак, Тетяна Геннадіївна ; Биканов, Сергій Миколайович ; Горбунов, Костянтин Олександрович ; Пономаренко, Євгенія Дмитрівна ; Соловей, Людмила ВалентинівнаПроцес ректифікації азеотропних сумішей має місце в багатьох галузях хімічної промисловості. Цей процес потребує значних енерговитрат, як на підігрів та випаровування технологічних потоків, так і на конденсування пари та охолодження продуктів. Витрати зовнішньої енергії суттєво залежать від засобів організації процесів розділення. Пінч-аналіз є одним з сучасних методів проектування хіміко-технологічних систем з метою оптимального використання зовнішніх джерел енергії шляхом максимальної теплової інтеграції технологічних потоків системи, враховуючи обмеження конкретного виробництва, вимоги екологічної безпеки та захисту довкілля. В даній роботі розглядається теплова інтеграція процесів розділення гетероазеотропної суміші фурфурол-вода на двох колонах, в кожній з яких легкокиплячим є азеоптроп, а низькокиплячим – один з компонентів. Було розраховано тепловий та матеріальний баланс ректифікаційної установки та сформовано таблицю даних потоків, тобто проведено екстракцію даних хімікотехнологічної системи. Серед загальної множини теплових потоків було обрано підмножину для інтеграції. Для обраних теплових потоків, що підлягають тепловій інтеграції, було побудовано складені криві та проаналізовано їх взаємне розташування на температурноентальпійній діаграмі. Цей аналіз показав, що для визначеного значення мінімальної температурної різниці в теплообмінному обладнанні Тmin, отримуємо порогову задачу. Проблему було сформульовано для значення Тmin, трохи меншого, ніж порогове значення, що привело до невеликого збільшення споживання зовнішніх енергоносіїв. Було розглянуто опції подальшого удосконалення мережі теплообмінників та було виявлено наявність циклу через псевдопінч, що дало змогу прибрати теплообмінник з низьким навантаженням та перерозподілити це навантаження на інші. Відновлення Тmin в даному випадку неможливе, бо маємо жорсткі умови по відсутності гарячих утиліт. Продемонстрована значна економія витрат потужності зовнішніх утиліт. Для модернізації було підібране сучасне теплообмінне обладнання фірми Alfa Laval на усі позиції, що потребується.Документ Експлуатаційні властивості палива для судноплавства, отриманого з вторинної полімерної сировини(Національний технічний університет "Харківський політехнічний інститут", 2023) Чернявський, Андрій Володимирович; Григоров, Андрій БорисовичВ статті обґрунтовано необхідність визначення експлуатаційних властивостей палива для судноплавства, отриманого з вторинної поліолефінової (HDPE та РР) сировини шляхом каталітичного піролізу. Оцінювати експлуатаційні властивості палива для судноплавства – marine gasoil (MGO) пропонується за значенням цетанового індексу (ЦІ, од.), співвідношення Н:С, робочої теплоти згоряння (Q, МДж/кг). З огляду на запропоновану нами схему каталітичного піролізу полімерної сировини, яка складається з двох стадій (І стадія – протікання реакцій на суміші (1:1) цеолітвмісних каталізаторів Zn-H-ZSM-5/Fe-H-ZSM-5; ІІ стадія – протікання реакцій на каталізаторі Ni-H-ZSM-5), виникає необхідність визначати наведені вище показники якості продуктів реакції (фракцій з межами википання п.к.-360(380) °С) після кожної стадії процесу. Також додатково нами були визначені показники якості і для фракцій, отриманих на промисловому каталізаторі H-ZSM-5. Запропонована програма досліджень, з одного боку, дозволяє визначити ефективність процесу піролізу з обраними каталізаторами у порівнянні з промисловою технологією, з іншого – дозволить корегувати процес в напрямку отримання кінцевого продукту рівня якості, який відповідає вимогам до MGO, представленим в ISO 8217:2017. Проведені дослідження показали, що за величиною ЦІ (48–50 од.) та ν 40 (2,8–3,1 мм²/с) фракції з межами википання 180–360(380) °С, які отримані піролізом полімерної сировини по запропонованій нами двохстадійній технології (на каталізаторах Zn-H-ZSM-5/Fe-H-ZSM-5, Ni-H-ZSM-5) можна віднести до марок дистилятних морських палив DMA, DFA, DMZ, DFZ (ISO 8217:2017). Дані фракції також характеризується високим співвідношенням Н:С (для HDPE – 1,62; для РР – 1,64) та робочою теплотою згоряння (для HDPE – 44,0 МДж/кг; для РР – 44,3 МДж/кг), що дає змогу використовувати їх в якості палив для судноплавства.Документ Розробка нової апаратурно-технологічної схеми процесу сульфатування сумішей органічних речовин(Національний технічний університет "Харківський політехнічний інститут", 2023) Дзевочко, Олександр Михайлович; Подустов, Михайло Олексійович; Дзевочко, Альона ІгорівнаВ статті наведено, що поверхнево-активні речовини на основі вищих спиртів фр. С12 – С14 знаходять основне використання в широкому спектрі засобів особистої гігієни, таких як шампуні, піноутворювачі для ван, зубні пасти, рідина для миття посуду, делікатні засоби для прання білизни. Використання ПАР на основі суміші вищіх спиртів фр. С12 – С14 та моноетаноламидів вищіх жирних кислот кокосової олії дає можливість значно покращити якісні характеристики засобів особистої гігієни. Наведено, що основним елементом апаратно-технологічної схеми процесу сульфатування сумішей органічних речовин є трубчастий плівковий абсорбер. Показано, що для сульфатування двохкомпонентних сумішей органічних речовин на основі вищіх спиртів фр. С12 – С14 та моноетаноламидів вищіх жирних кислот кокосової олії необхідно використовувати трубчастий плівковий абсорбер, який має двоступінчасте охолодження – верхня частина 1/3 довжини абсорбера, нижня частина 2/3 довжини абсорбера. Швидкість газоповітряного потоку підтримується на рівні Vг = 20 м/с, мольне співвідношення реагентів 1,08 : 1,0 концентрація триоксиду сірки в газоповітряному потоці – 3,7 % об., температура вихідних реагентів: рідинної фази – 313 К, газоповітряного потоку – 303 К, охолоджувальної води – 293 К. Виходячи з таких початкових даних був розрахований промисловий трубчастий абсорбер. Наведені дані такого розрахунку. Наведено, що розрахунок промислового трубчастого плівкового абсорбера проводився згідно з розробленим алгоритмом та програмою на мові MatLab, в програмі використано ітераційний метод розрахунку. Наведено розрахунок кількості труб промислового абсорбера. Показано, що абсорбер складається з таких основних елементів – верхньої елептичної кришки, розподільчої плити газоповітряного потоку, камери для розподілу суміші органічних речовин, плівкоутворювачів, двох камер охолодження, нижньої елептичної кришки. Наведено, що на основі промислового трубчастого плівкового абсорбера розроблена та приведена нова апаратурно-технологіна схема.