Вісник № 01. Динаміка і міцність машин
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/54375
Переглянути
2 результатів
Результати пошуку
Документ Нестаціонарні коливання миттєво навантаженого осцилятора в умовах нелінійного опору(Національний технічний університет "Харківський політехнічний інститут", 2021) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович; Сліпченко, Максим ВолодимировичРозглянуто рух осцилятора, миттєво навантаженого сталою силою в умовах нелінійного зовнішнього опору, складовими якого є квадратичний в’язкий опір, сухе та позиційне тертя. Використовуючи перший інтеграл рівняння руху та функцію Ламберта, виведено компактні формули для обчислень розмахів коливань. З метою спрощення пошуку значень функції Ламберта наведено асимптотичні формули, які з похибкою меншою одного відсотка виражають цю спеціальну функцію через елементарні функції. Показано, що внаслідок дії сили опору, що включає сухе тертя, процес коливань має скінченну кількість циклів і обмежений у часі, бо осцилятор попадає в область застою, яка знаходиться в околі статичного відхилення осцилятора, спричиненого прикладеною зовнішньою силою. Коефіцієнт динамічності системи менший двох. Розглянуто приклади розрахунків, що ілюструють можливості викладеної теорії. Крім аналітичного дослідження, проведено чисельне комп’ютерне інтегрування, диференціального рівняння руху. Встановлено повну збіжність результатів, одержаних за допомогою виведених формул і чисельним інтегруванням, чим підтверджено, що використовуючи аналітичні розв’язки можна без чисельного інтегрування нелінійного диференціального рівняння визначати екстремальні переміщення осцилятора. Для спрощення розрахунків рекомендована також література, де надруковано таблиці функції Ламберта, що дають можливість знаходити її значення інтерполяцією табличних даних. В умовах нелінійного зовнішнього опору, складовими якого є квадратичний в’язкий опір, сухе та позиційне тертя процес коливань миттєво навантаженого осцилятора має обмежену кількість циклів. Отримані у роботі залежності з використанням функції Ламберта дають можливість визначати розмахи коливань без чисельного інтегрування нелінійного диференціального рівняння руху як для осцилятора з квадратичним в’язким опором і сухим тертям, так і для осцилятора з квадратичним опором та позиційним і сухим тертям.Документ Динаміка осцилятора з квадратичною нелінійністю у виразі сили пружності, навантаженого ступінчастим імпульсом(Національний технічний університет "Харківський політехнічний інститут", 2021) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович; Сліпченко, Максим ВолодимировичОписано нестаціонарні коливання осцилятора з квадратичною нелінійністю у виразі сили пружності при дії миттєво прикладеної сталої сили. Аналітичний розв’язок нелінійного диференціального рівняння другого порядку виражено через періодичні еліптичні функції Якобі. Показано, що коефіцієнт динамічності нелінійної системи залежить від значення миттєво прикладеної сили і напряму її дії, оскільки характеристика пружності системи несиметрична. Якщо сила спрямована в бік додатніх переміщень, то характеристика системи «жорстка» і коефіцієнт динамічності знаходиться в проміжку (3;2 ), тобто він менший, ніж у лінійної системи. У випадку, коли сила спрямована в бік від’ємних переміщень, характеристика пружності системи «м’яка» і коефіцієнт динамічності попадає в проміжок (2; 3), тобто він більший ніж у лінійної системи. У другому випадку деформування існують статичне і динамічне критичні значення сили, перевершення яких призводить до втрати стійкості системи. Динамічне критичне значення сили менше, ніж статичне. Оскільки переміщення осцилятора виражаються через функції Якобі, запропонована формула наближеного їх обчислення з використанням таблиці повного еліптичного інтегралу першого роду. Наведено результати розрахунків, які ілюструють можливості викладеної теорії. Для порівняння, паралельно з використанням аналітичних розв’язків, проводилось чисельне комп’ютерне інтегрування диференціального рівняння руху. Збіжність результатів розрахунку двома способами підтвердила адекватність виведених формул, які придатні також для аналізу руху квадратично нелінійного осцилятора з симетричною характеристикою пружності. Таким чином, розглянута нелінійна задача має аналітичний розв’язок в еліптичних функціях, а процес руху залежить від того, в який бік діє зовнішня сила. Крім того, при дії сили в бік меншої жорсткості можлива втрата стійкості системи.