05.13.05 "Комп'ютерні системи та компоненти"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/19577
Переглянути
Документ Моделі і методи побудови архітектури і компонентів детекторних нейроморфних комп'ютерних систем(НТУ "ХПІ", 2018) Паржин, Юрій ВолодимировичДисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.13.05 – комп'ютерні системи та компоненти. – Національний технічний університет "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2018. Дисертація присвячена вирішенню проблеми підвищення ефективності побудови та використання нейроморфних комп'ютерних систем (НКС) в результаті розробки моделей побудови їх компонентів та загальної архітектури, а також методів їх навчання на основі формалізованого детекторного принципу. В результаті аналізу і класифікації архітектури та компонентів НКС встановлено, що в основі всіх їх нейромережевих реалізацій лежить конекціоністська парадигма побудови штучних нейронних мереж. Було обґрунтовано та формалізовано альтернативний до конекціоністської парадигми детекторний принцип побудови архітектури НКС та її компонентів, в основі якого лежить встановлена властивість зв’язності елементів вхідного вектору сигналів та відповідних вагових коефіцієнтів нейроелемента НКС. На основі детекторного принципу були розроблені багатосегментні порогові інформаційні моделі компонентів детекторної НКС (ДНКС): блоків-детекторів, блоків-аналізаторів та блоку новизни, в яких в результаті розробленого методу зустрічного навчання формуються концепти, що визначають необхідні і достатні умови формування їх реакцій. Метод зустрічного навчання ДНКС дозволяє скоротити час її навчання при вирішенні практичних задач розпізнавання зображень до однієї епохи та скоротити розмірність навчальної вибірки. Крім того, цей метод дозволяє вирішити проблему стабільності-пластичності пам'яті ДНКС та проблему її перенавчання на основі самоорганізації карти блоків-детекторів вторинного рівня обробки інформації під управлінням блоку новизни. В результаті досліджень була розроблена модель мережевої архітектури ДНКС, що складається з двох шарів нейроморфних компонентів первинного та вторинного рівнів обробки інформації, та яка дозволяє скоротити кількість необхідних компонентів системи. Для обґрунтування підвищення ефективності побудови та використання НКС на основі детекторного принципу, були розроблені програмні моделі ДНКС автоматизованого моніторингу та аналізу зовнішньої електромагнітної обстановки, а також розпізнавання рукописних цифр бази даних MNIST. Результати дослідження цих систем підтвердили правильність теоретичних положень дисертації та високу ефективність розроблених моделей і методів.Документ Моделі і методи побудови архітектури і компонентів детекторних нейроморфних комп'ютерних систем(НТУ "ХПІ", 2018) Паржин, Юрій ВолодимировичДисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.13.05 – комп'ютерні системи та компоненти. – Національний технічний університет "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2018. Дисертація присвячена вирішенню проблеми підвищення ефективності побудови та використання нейроморфних комп'ютерних систем (НКС) в результаті розробки моделей побудови їх компонентів та загальної архітектури, а також методів їх навчання на основі формалізованого детекторного принципу. В результаті аналізу і класифікації архітектури та компонентів НКС встановлено, що в основі всіх їх нейромережевих реалізацій лежить конекціоністська парадигма побудови штучних нейронних мереж. Було обґрунтовано та формалізовано альтернативний до конекціоністської парадигми детекторний принцип побудови архітектури НКС та її компонентів, в основі якого лежить встановлена властивість зв’язності елементів вхідного вектору сигналів та відповідних вагових коефіцієнтів нейроелемента НКС. На основі детекторного принципу були розроблені багатосегментні порогові інформаційні моделі компонентів детекторної НКС (ДНКС): блоків-детекторів, блоків-аналізаторів та блоку новизни, в яких в результаті розробленого методу зустрічного навчання формуються концепти, що визначають необхідні і достатні умови формування їх реакцій. Метод зустрічного навчання ДНКС дозволяє скоротити час її навчання при вирішенні практичних задач розпізнавання зображень до однієї епохи та скоротити розмірність навчальної вибірки. Крім того, цей метод дозволяє вирішити проблему стабільності-пластичності пам'яті ДНКС та проблему її перенавчання на основі самоорганізації карти блоків-детекторів вторинного рівня обробки інформації під управлінням блоку новизни. В результаті досліджень була розроблена модель мережевої архітектури ДНКС, що складається з двох шарів нейроморфних компонентів первинного та вторинного рівнів обробки інформації, та яка дозволяє скоротити кількість необхідних компонентів системи. Для обґрунтування підвищення ефективності побудови та використання НКС на основі детекторного принципу, були розроблені програмні моделі ДНКС автоматизованого моніторингу та аналізу зовнішньої електромагнітної обстановки, а також розпізнавання рукописних цифр бази даних MNIST. Результати дослідження цих систем підтвердили правильність теоретичних положень дисертації та високу ефективність розроблених моделей і методів.