Вісник № 01(1355) Математичне моделювання в техніці та технологіях

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/47495

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Про апроксимацію функції Ламберта
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Ольшанський, Василь Павлович
    Виведено компактні формули для обчислення значень функції Ламберта на певних проміжках її області визначення. Це досягнуто заміною трансцендентних рівнянь на відповідні алгебраїчні (квадраті та кубічні), за умови малої зміни їх коренів при переході від одних видів рівнянь до інших. У побудові апроксимацій задіяна формула Шенкса, що наближено виражає суму повільно збіжного степеневого ряду. Порівняння наближених значень функції Ламберта з точними її значеннями показало, що похибка запропонованих апроксимацій на виділених проміжках аргументів менша за 0,5 %. Проміжки охоплюють не тільки великі, а і малі та від’ємні значення аргументу, де функція двохзначна. Апроксимація стосується обох гілок функції.
  • Ескіз
    Документ
    Автоколивання, описані узагальненим рівнянням Ван дер Поля
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Ольшанський, Василь Павлович; Ольшанський, Станіслав Васильович
    Розглянуто квазілінійні автоколивання, представлені узагальненим рівнянням Ван дер Поля. Узагальнення проведено заміною в названому рівнянні квадрату швидкості на її довільний невід’ємний степінь. Методом енергетичного балансу побудовано наближений аналітичний розв’язок, який описує вихід коливальної системи на режим усталених автоколивань. Одержано компактну формулу для обчислення амплітуди цього режиму і доведено, що вона не залежить від початкових умов. Обчислення вказаної амплітуди пов’язане з використанням таблиці гама-функції. Показано, що одержаний наближений аналітичний розв’язок в окремих випадках узагальнює відомі результати в теорії коливань. Для висвітлення похибок цього розв’язку додатково проведено чисельне інтегрування узагальненого диференціального рівняння на комп’ютері для конкретних числових даних. Задовільна узгодженість чисельних результатів, одержаних двома способами, підтвердила придатність наближених формул до проведення інженерних розрахунків. Досліджено також коливання, які описує узагальнене рівняння після заміни на протилежний знак дисипативної сили. Тоді рух коливальної системи залежить від початкових умов. При менших за порогове стартових відхиленнях осцилятора від положення статичної рівноваги він виконує вільні затухаючі коливання. У випадку більших за порогове початкових відхилень відбувається розгойдування вільних коливань і з плином часу розмахи осцилятора прямують до нескінченності за обмежений проміжок часу. Виведена формула порогового відхилення дозволяє судити про стійкість динамічної системи при різних показниках нелінійності в рівнянні руху та різних початкових збуреннях.