Вісник № 01. Інноваційні дослідження у наукових роботах студентів
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/53879
Переглянути
Документ Methods and approaches to simulation, diagnostics, forecasting equipment state and optimization of robot modes of NPP power units(Національний технічний університет "Харківський політехнічний інститут", 2021) Yefimov, Olexander Vyacheslavovych; Kavertsev, Valery Leonidovich; Potanina, Tetiana Volodymyrivna; Harkusha, Tetyana Anatoliivna; Tiutiunyk, Larysa Ivanivna; Motovilnik, Anastasiia VadimovnaNuclear power plants are the basis of energy in many countries of the world, which determines the pace of their economic development. At the same time, they as complex technological systems are objects of the increased technogenic danger. Therefore, ways to increase the reliability, safety and efficiency of NPP power equipment have already been developed and continue to be developed, which are largely based on diagnostic procedures. During the operation of power equipment, especially during its long period, its technical characteristics, and, consequently, the parameters of technological processes, change under the influence of external factors and as a result of wear, or even destruction, of individual structural elements. Changing the characteristics of the equipment usually leads to a decrease in the level of adequacy and to the loss of conformity of mathematical expressions in the models of the content of the processes described by them.The materials of the article consider the identification of mathematical models of NPP power unit equipment in the process of parametric diagnostics. Ways to increase the reliability, safety and efficiency of NPP power equipment have been developed and continue to be developed, which are largely based on diagnostic procedures. The use of the iterative process to find the values of the identified parameters can be used to identify mathematical models of technological processes in NPP power equipment, which increases the adequacy of models and the reliability of diagnostic conclusions in solving parametric diagnostic problems.