2023 № 2 Сучасні інформаційні системи
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/66396
Переглянути
Публікація Generating currency exchange rate data based on Quant-GAN model(Національний технічний університет "Харківський політехнічний інститут", 2023) Bao, Dun; Zakovorotnyi, Oleksandr; Kuchuk, N. G.This paper discusses the use of machine learning algorithms to generate data that meets the demands of academia and industry in the context of exchange rate fluctuations. Research results. The paper builds a Quant-GAN model using temporal convolutional neural networks (CNN) and trains it on end-of-day and intraday high-frequency rates of currency pairs in the global market. The generated data is evaluated using various statistical methods and is found to effectively simulate the real dataset. Experimental results show that data generated by the model effectively fits statistical characteristics and typical facts of real training datasets with good overall fit. The results provide effective means for global FX market participants to carry out various tasks such as stress tests and scenario simulations. Future work includes accumulating data and increasing computing power, optimizing and improving GAN models, and establishing evaluation standards for generating exchange rate price data. As computing power continues to grow, the GAN model’s ability to process ultra-large-scale datasets is expected to improve.