05.11.13 "Прилади і методи контролю та визначення складу речовин"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17000
Переглянути
Документ Методи і засоби збудження ультразвукових імпульсів ємнісним методом(Національний технічний університет "Харківський політехнічний інститут", 2021) Ноздрачова, Катерина ЛеонідівнаДисертація на здобуття вченого ступеня доктора технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет «Харківський політехнічний інститут», Харків, 2020. В дисертаційній роботі вирішено актуальну науково-практичну проблему – розвиток теоретичних положень та засобів для збудження високочастотних ультразвукових імпульсів ємнісними перетворювачами у виробах з електропровідних матеріалів з підвищеною чутливістю за рахунок збільшення відношення амплітуд корисного сигналу до завад. У дисертаційній роботі вперше розроблена математична модель ємнісного перетворювача, призначеного для збудження ультразвукових коливань в електропровідному виробі, за допомогою якої вирішені дві задачі електростатики та динамічної теорії пружності для кусково-однорідного середовища. Експериментально побудовані діаграми спрямованості акустичного поля та визначені основні фактори, які впливають на інтенсивність ультразвукових імпульсів, що збуджуються ЄП. Розроблені нові конструкції ємнісних перетворювачів призначених для контролю електропровідних виробів різними типами ультразвукових хвиль. Застосування даних перетворювачів дозволить значно підвищити відношення сигнал/завада. Розроблено високочастотні генератори збудження високовольтних пакетів одно- та двополярних імпульсів для живлення ємнісних перетворювачів. Експериментально підтверджена можливість збудження поздовжніх та поверхневих хвиль ємнісними перетворювачами з інтенсивністю ультразвукового поля, достатньою для проведення вимірювань, контролю та діагностики. Практичне значення роботи полягає в технічній можливості використання ємнісних перетворювачів для ультразвукового контролю, вимірювань та діагностики електропровідних виробів. Для реалізації ємнісного методу розроблено і виготовлено: макети пристроїв для досліджень характеристик ЄП різного призначення; генератори високовольтних імпульсів напруги для живлення ЄП; стійкий до дії шумів підсилювач ультразвукових сигналів; макет приладу для формування вхідних імпульсів генераторів напруги з можливістю регулювання частоти, тривалості, частоти зондування тощо; методику побудови вихідних каскадів генераторів живлення ЄП. Створено програмне забезпечення для роботи макетів пристроїв для досліджень характеристик ЄП різного призначення.Документ Методи і засоби збудження ультразвукових імпульсів ємнісним методом(Національний технічний університет "Харківський політехнічний інститут", 2020) Ноздрачова, Катерина ЛеонідівнаДисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовин – Національний технічний університет "Харківський політехнічний інститут". Дисертація присвячена розробці нових теоретичних положень та засобів для збудження високочастотних ультразвукових імпульсів ємнісними перетворювачами (ЄП) з підвищеною чутливістю на основі збільшення відношення амплітуд корисного сигналу до завад у виробах з електропровідних матеріалів. Виконано аналітичний огляд та аналіз сучасних засобів і методів контролю та діагностики безконтактними ультразвуковими методами неруйнівного контролю. Встановлено, що в значній мірі виключити недоліки традиційного контактного та безконтактного ультразвукових методів збудження високочастотних ультразвукових імпульсів в електропровідних виробах можливо за рахунок застосування нових принципів створення приладів, адаптації сучасних методів виділення корисних імпульсів з шумів і перешкод, нетрадиційних схемотехнічних рішень. Таким чином можливе збільшення чутливості і підвищення ефективності роботи і області застосування ємнісних перетворювачів і приладів на їх основі. Встановлено доцільність використання відношення амплітуди корисного сигналу до амплітуди завад як характеристику чутливості. Створена математична модель перетворювача ємнісного типу в режимі збудження ультразвукових хвиль в металах. Побудовано замкнутий розв'язок задачі електростатики для кусково-однорідного середовища, в якій напівпростір заповнений металом з кінцевими значеннями електричної провідності і магнітної проникності. Отримано вираз для розрахунку поверхневої щільності статичного електричного заряду на поверхні металевого зразка. Отримано і досліджено вираз для розрахунку поверхневої щільності сил Кулона, які формуються перетворювачем ємнісного типу з дисковим електродом. Показано, що основними впливаючими факторами, що визначають поверхневу щільність сил Кулона, і, як наслідок, чутливість перетворювача, є: поляризуюча напруга; ємність перетворювача (діелектрична проникність); розмір перетворювача; величина зазору між перетворювачем і виробом; форма перетворювача. Отримано вираз для розрахунку амплітудного множника хвилі Релея, що радіально поширюється і збуджується перетворювачем ємнісного типу з дисковим електродом. Введено поняття хвильової характеристики перетворювача ємнісного типу з дисковим електродом. Наведено результати дослідження ефективності збудження радіально поширюючихся хвиль Релея в широкому частотному діапазоні. Показано, що збудження ультразвукових імпульсів з частотному спектрі в сотні кілогерц можливо перетворювачем, у якого радіус диска не перевищує п'яти міліметрів. На основі теоретичних здобутків виконано експериментальні дослідження, з яких встановлено: при діаметрах випромінюючого електрода ємнісного перетворювача 5 ... 9,5 мм щільність зарядів плавно спадає до кромки електрода і триває за його межами; при діаметрах випромінюючих електродів 20 ... 31 мм починає проявлятися більш рівномірна область в районі центру електрода, потім відбувається збільшення щільності зарядів при наближенні до краю електрода і потім плавне зменшення щільності, в тому числі і за межами проекції електрода, але в меншій мірі, ніж при малих відносних розмірах електродів; при товщині досліджених зразків в діапазоні 5 ... 25 мм тіньовим методом осциляцій прийнятих п’єзоелектричним перетворювачем імпульсів по амплітуді поперек збуджуючого імпульсного акустичного поля не спостерігалося; характер залежності амплітуд першої і другої напівхвилі прийнятого першого тіньового імпульсу при всіх досліджених діаметрах електродів ЄП і товщині зразків практично збігаються; враховуючи розподіл амплітуди акустичного поля сформованого ємнісним перетворювачем з діаметрами близько 20 мм і більше можна припустити, що заряди на поверхні електрода ємнісного перетворювача також розподіляються нерівномірно, концентруючись ближче до його краю, тому що це характерно для одиночного відокремленого електропровідного тонкого диска; при визначенні діаграми спрямованості ємнісного перетворювача необхідно враховувати реальну випромінюючу поверхню. Виходячи з теоретичних досліджень, пояснити ефект плавного зменшення амплітуди ультразвукового імпульсу і існування її за проекцією електрода ємнісного перетворювача на поверхні електропровідного виробу можна тим, що на «індуковані» на поверхні півпростору заряди діють дві основні сили. З одного боку – сила притягнення зарядами на поверхні металу електрода ємнісного перетворювача, а з протилежного – сили відштовхування однойменних зарядів на поверхні металу зразка. Очевидно, сили відштовхування і призводять до зміщення зарядів за проекцію електрода ємнісного перетворювача на півпростір металу, зменшуючи їх щільність під проекцією. З наведених даних також випливає, що при зменшенні діаметра ємнісного перетворювача, розподіл зарядів в поверхневому шарі металу стає більш нерівномірним (в відносних розмірах). При виконанні роботи розроблено і виготовлено блок формувача послідовності імпульсів, модуль гальванічної опторозв’язки, високовольтний напівміст і підвищуючий симетричний широкосмуговий трансформатор для використання в складі вимірювальної, контрольної та діагностичної техніки на основі ЄП. Запропоновано варіант практичної реалізації одно– та двополярних генераторів потужних радіоімпульсів напруги на базі мікроконтролера, силових MOSFET транзисторів і симетричного підвищуючого широкосмугового трансформатора, який забезпечує на ємнісний перетворювач високочастотні високовольтні імпульси позитивної та негативної полярності, амплітудою до 1 кВ, частотою до 5 МГц тривалістю три періоди частоти заповнення. Експериментально доведено можливість реалізувати випромінювання ультразвукових коливань ємнісним методом на практиці, із застосуванням сучасних досягнень в області електротехніки. Показано, що співвідношення донний сигнал / завада досягає 15,5 разів. Можливе подальше підвищення амплітуди збуджуючих імпульсів шляхом підвищення поляризуючої і імпульсної напруги. Визначено «мертву» зону, що для однополярної схеми включення складає 26,55 мм, двополярної – 17,7мм. Одне з досягнень даної розробки дає можливість розроблену схему зробити портативною у вигляді макету дефектоскопу. Розроблені конструкції ємнісних перетворювачів, що забезпечує більш високу ефективність перетворення електричної енергії в акустичні в порівнянні з відомими конструкціями: – способи ємнісного збудження і прийому імпульсів високочастотних поверхневих хвиль за допомогою різних варіацій верхніх електродів перетворювача (що розміщуються над поверхнею виробу) і відстаней між ними, які повинні бути кратними довжині хвилі; – роздільно – поєднані безконтактні ультразвукові ємнісні перетворювачі для контролю імпульсами поверхневих хвиль. Їх конструкція передбачає розміщення випромінюючого і приймаючого електродів перетворювача в одному корпусі, що значно підвищить ефективність контролю і зменшить завади прийнятих імпульсів за рахунок такого конструктивного рішення; – комбіновані ємнісні перетворювачі для контролю імпульсами ультразвукових хвиль Релея фізико–механічних властивостей металовиробів. Особливості конструкції такого типу ємнісних перетворювачів дають можливість мати високу захищеність від когерентних акустичних завад, що є важливим при визначенні таких параметрів матеріалів як твердість, коефіцієнт Пуасона і т.д.; – на основі безконтактного ємнісного ультразвукового методу запропоновано способи збудження ультразвукових об’ємних хвиль під кутом до поверхні електропровідного виробу, детально описані схеми і принцип їх реалізації. Визначено, що ефективність безконтактного збудження ультразвукових імпульсів в електропровідному виробі під кутом до поверхні забезпечується за рахунок складання з однаковою фазою амплітуд ультразвукових імпульсів в заданому напрямку; – спектральний спосіб ультразвукового ємнісного виявлення дефектів на донній поверхні електропровідного виробу. За допомогою якого можна підвищити ефективність виявлення пошкоджень донної поверхні ОК аналізуючи спотворення форми огинаючої спектру прийнятого ємнісним методом пакетного ультразвукового сигналу; – ємнісні ультразвукові прямі суміщені перетворювачі з регульованою діаграмою спрямованості. Розглянуто два типа перетворювачів, з фіксованим верхнім електродом, радіус викривлення якого визначено експериментально заздалегідь і з електродом, радіус якого можна регулювати в процесі контролю. Основною особливість реалізації цих способів є забезпечення рівномірності діаграми спрямованості. – ємнісний спосіб збудження і прийому пружних хвиль. При якому верхній електрод являється як збудником УЗК і приймачем, електричні імпульси на який подаються певної форми з певною періодичністю та амплітудою, що забезпечує підвищення чутливості розробленого способу. – ультразвуковий комп’ютеризований макет дефектоскопу ємнісного типу. Прилади, які не мають пристрою сполучення з комп'ютером, часто використовуються в дуже обмеженому полі дій. В основному це портативні моделі, що використовуються в польових умовах. У стаціонарному режимі введення інформації в комп'ютер часто є необхідною функцією. Переваги комп'ютеризації фізичних засобів отримання інформації: розширення функціональних можливостей приладів; поліпшення технічних характеристик приладів, зокрема підвищення достовірності результатів контролю; підвищення продуктивності контролю; можливість використання персоналу без глибокої спеціальної підготовки; подання інформації у вигляді, зручному для оператора. Тобто, застосування комп’ютерів та мікропроцесорної техніки при розробці дефектоскопів, що використовують ємнісний перетворювачів дозволить не тільки підвищити чутливість контролю, а й швидкодію обробки прийнятої інформації.