05.11.13 "Прилади і методи контролю та визначення складу речовин"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17000
Переглянути
6 результатів
Результати пошуку
Документ Метод контролю струмових перевантажень в силових кабелях середньої напруги(Національний технічний університет "Харківський політехнічний інститут", 2021) Гонтар, Юлія ГригорівнаДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.13 "Прилади і методи контролю та визначення складу речовин" – Національний технічний університет "Харківський політехнічний інститут". Дисертаційна робота присвячена розробці методу контролю струмових перевантажень в силових кабелях середньої напруги з ізоляцією із зшитого поліетилену. Виконано аналітичний огляд технічних переваг силових кабелів з ізоляцією із зшитого поліетилену; визначено, що при модернізації існуючих та проектуванні нових розподільчих мереж найважливішою є інформація про величину гранично допустимих струмів навантаження, що визначається саме за температурою струмопровідних жил кабелів. При значному перевищенні рівня нагрівання провідників (вище допустимого) струм навантаження повинен бути скоригований, що важливо для ефективного функціонування лінії в складі енергосистеми. Встановлено, що тривало допустимий струм в нормованих умовах експлуатації є головною технічною характеристикою пропускної спроможності кабелю. Використання стандартних методів визначення пропускної спроможності вимагає урахування особливостей конструкції кабелю, які притаманні саме кабелям середньої напруги зі зшитою поліетиленовою ізоляцією. В результаті проведених досліджень запропоновано модель, яка дозволяє визначати параметри тривалого струмового навантаження ЗПЕ-кабелю за рахунок введення в систему рівнянь аналітичного виразу для визначення коефіцієнту розсіяння тепла. Це дозволило врахувати особливості конструкції кабелю. Визначені та обґрунтовані напрямки дисертаційного дослідження. Теоретично і експериментально підтверджено метод контролю допустимих струмових перевантажень шляхом визначення постійної нагрівання кабелю струмом перевантаження. Проведено теоретичні та експериментальні дослідження визначення динаміки нагрівання кабелів АПвЕгаПу – 1×70 – 35 кВ та ААШв 1х 75 – 10 кВ за різних температур оточуючого середовища. Проведений розрахунок динаміки нагрівання даних кабелів за допомогою двохпараметричної експоненційної моделі (параметр масштабу τmax = Θгр – Θос і параметр форми експоненти β), враховано умову збереження теплового балансу. Для даних типів конструкцій кабелів визначена стала нагрівання β. Встановлено, що за можливості, слід віддати перевагу експериментальному визначенню динаміки нагрівання конкретного кабелю в визначених умовах. За допомогою статистичної моделі визначено точність експериментальної оцінки. Проведено аналіз результатів розрахунку сталої нагріву жили, визначеної за різними моделями для кабелю АПвЕгаПу–1×70 – 35 кВ. Визначено, що порівняння орієнтовно розрахованих оцінок сталої нагрівання двох типів кабелів середньої напруги з результатами оцінювання відповідних значень як параметрів лінійної функції за результатами вимірювання динаміки нагрівання жил цих кабелів свідчить про те, що орієнтовний розрахунок сталої нагрівання кабелів середньої напруги відображає особливості їх конструкції, не вимагає тривалого експерименту і дозволяє тим самим оперативно і адекватно оцінити вплив конструкції кабелю на динаміку його нагрівання, використовуючи двохпараметричну експоненту. Проаналізовано вплив технологічних особливостей виготовлення ЗПЕ-кабелів. Проведено аналіз впливу структури напівпровідного екрану на розподіл електричного поля в ізоляції ЗПЕ-кабелю на напругу 35 кВ. Встановлено, що за умови застосування в матеріалі екрану пічної сажі замість ацетиленової на границі екран-ізоляція можуть виникати місця локального посилення електричного поля. Розроблено програми обчислень для методу подвійного конформного перетворення з метою визначення розподілу напруженості електричного поля з урахуванням того, що діелектрик складається з шарів з різними електрофізичними параметрами. Отримано аналітичне рішення для знаходження розподілу потенціалу в замкненій області. Проаналізовано процес дегазації ЗПЕ-кабелю, на основі протоколів термогравиметричного аналізу дані практичні рекомендації щодо строків дегазації. Встановлено, що у разі використання в матеріалу екрану ацетиленової сажу і забезпечено повну дегазацію кабелю, то максимальна напруженість електричного поля в ізоляції кабелю на напругу 35 кВ не перевищує 4…4,5 кВ/мм. В іншому разі локальне значення максимальної напруженості електричного поля в ізоляції кабелю на напругу 35 кВ може досягати кількох десятків кВ/мм, що є причиною виникнення часткових розрядів в ізоляції. Розроблено методу оцінки та контролю струмових перевантажень в ЗПЕ-кабелях середньої напруги. Встановлено, що необхідною умовою визначення допустимого струмового навантаження є визначення кривих перевантажувальної спроможності у вигляді залежностей кратності струму перевантаження Іп до гранично допустимого струму Ідоп в стаціонарному режимі роботи кабелю від часу перевантаження. Такі залежності дозволяють розробляти нормативи для конкретних кабельних ліній, оскільки відповідні кратності залежать від певних умов прокладання та експлуатації. За умови, що режим навантаження є допустимим, тобто поточний перегрів не перевищує максимально допустимий, визначено струм та час допустимого перевантаження. Проведено розрахунок коефіцієнту допустимого перевантаження від часу перевантаження. Встановлено, що визначення коефіцієнту допустимого перевантаження k дозволяє представити перевантажувальну здатність конкретного кабелю компактно у вигляді сімейства кривих допустимих перевантажень, при цьому необхідною є лише інформація про сталу нагрівання β. За результатами дослідження знайдено діапазон можливих режимів тривалого струмового навантаження для конкретної конструкції кабелю, визначено часові та температурні межі при заданому коефіцієнті перевантаження. Запропоновано представлену систему контролю допустимого струмового перевантаження ЗПЕ-кабелів інтегрувати в існуючу систему контрольних випробувань на підприємстві. Дані практичні рекомендації щодо впровадження запропонованого методу в систему існуючих контрольних випробувань на кабельних підприємствах. Відзначено, що доцільно використовувати запропонований метод контролю як неруйнівну діагностику силових кабелів. Результати розробок захищені патентом України на корисну модель. Розроблений метод контролю струмових перевантажень в силових кабелях середньої напруги впроваджено на кабельному заводі ТОВ "ЄВРОПАН" та в навчальному процесі кафедри електроізоляційної і кабельної техніки НТУ "ХПІ" при підготовці бакалаврів та магістрів за спеціальністю 141 – "Електроенергетика, електротехніка та електромеханіка", а саме в курсах "Основи кабельної техніки", "Розрахунок і конструювання силових кабелів і проводів", "Техніка випробувань електроізоляційних, кабельних та оптоволоконних систем".Документ Метод контролю струмових перевантажень в силових кабелях середньої напруги(Національний технічний університет "Харківський політехнічний інститут", 2021) Гонтар, Юлія ГригорівнаДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовин. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2021 р. Дисертаційна робота присвячена розробці методу контролю струмових перевантажень в силових кабелях середньої напруги з ізоляцією із зшитого поліетилену. Запропоновано модель, яка дозволяє визначати параметри стаціонарного теплового режиму конкретного кабелю за будь-якого струму навантаження. Вдосконалено математичну модель для визначення параметрів тривалого струмового навантаження ЗПЕ-кабелю за рахунок введення в систему рівнянь аналітичного виразу для визначення коефіцієнту розсіяння тепла, що дозволило врахувати особливості конструкції конкретного кабелю. Проаналізовано діапазон експлуатаційних режимів, в яких необхідно оцінювати перевантажувальну здатність кабелів зі ЗПЕ-ізоляцією. Проведено теоретичні та експериментальні дослідження визначення динаміки нагрівання кабелю АПвЕгаПу – 1×70 – 35 кВ в умовах реального виробництва. Проаналізовано вплив технологічних особливостей виготовлення ЗПЕ-кабелів. Встановлено, що за умови застосування в напівпровідних екранах пічної сажі замість ацетиленової на границі екран-ізоляція можуть виникати місця локального посилення електричного поля. Проаналізовано процес дегазації ЗПЕ-кабелю, на основі протоколів термогравиметричного аналізу дані практичні рекомендації щодо строків дегазації. За умови, що режим навантаження є допустимим, тобто поточний перегрів не перевищує максимально допустимий, визначено струм та час допустимого перевантаження. Встановлено діапазон можливих режимів тривалого струмового навантаження для конкретної конструкції кабелю, визначено часові та температурні межі при заданому коефіцієнті перевантаження. Дані практичні рекомендації щодо впровадження запропонованого методу в систему існуючих контрольних випробувань на кабельних підприємствах. Відзначено, що доцільно використовувати запропонований метод контролю як неруйнівну діагностику силових кабелів.Документ Підвищення завадостійкості теплової дефектоскопії багатошарових конструкцій та трубопроводів(Харківський національний університет радіоелектроніки, 2018) Мягкий, Олександр ВалерійовичДисертаційна робота на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовини. – Харківський національний університет радіоелектроніки, Харків, 2019. Дисертація присвячена підвищенню завадостійкості теплової дефектоскопії багатошарових стільникових конструкцій і трубопроводів шляхом зниження завад в тепловому неруйнівному контролі як за рахунок вибору режиму контролю за критерієм максимуму відношення сигнал / завада, так і за допомогою подальшої комп'ютерної обробки отриманих експериментальних даних. Запропоновано теплофізичні моделі багатошарових стільникових конструкцій і трубопроводів. Розроблено програмний пакет "TermoPro_TFH_Statistic" і на його основі проведено чисельні експерименти по вибору режимів теплової дефектоскопії. Проведено ряд натурних і лабораторних експериментів з дослідження впливу завад на тепловий неруйнівний контроль. Розроблено ряд фільтрів, а також послідовність їх застосування для істотного зниження рівня завад при проведенні ТДС. Завдяки цьому підвищилась чутливість теплової дефектоскопії до виявлення дефектів типу "непроклей" в стільникових структурах – розмір порогового дефекту знижений з 6 мм до 3 мм, а достовірність їх виявлення зросла на 17-20%.Документ Підвищення завадостійкості теплової дефектоскопії багатошарових конструкцій та трубопроводів(Національний технічний університет "Харківський політехнічний інститут", 2019) Мягкий, Олександр ВалерійовичДисертаційна робота на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.13 - прилади і методи контролю та визначення складу речовини. – Харківський національний університет радіоелектроніки, Харків, 2019. Дисертація присвячена підвищенню завадостійкості теплової дефектоскопії багатошарових стільникових конструкцій і трубопроводів шляхом зниження завад в тепловому неруйнівному контролі як за рахунок вибору режиму контролю за критерієм максимуму відношення сигнал / завада, так і за допомогою подальшої комп'ютерної обробки отриманих експериментальних даних. Запропоновано теплофізичні моделі багатошарових стільникових конструкцій і трубопроводів. Розроблено програмний пакет "TermoPro_TFH_Statistic" і на його основі проведено чисельні експерименти по вибору режимів теплової дефектоскопії. Проведено ряд натурних і лабораторних експериментів з дослідження впливу завад на тепловий неруйнівний контроль. Розроблено ряд фільтрів, а також послідовність їх застосування для істотного зниження рівня завад при проведенні ТДС. Завдяки цьому підвищилась чутливість теплової дефектоскопії до виявлення дефектів типу "непроклей" в стільникових структурах – розмір порогового дефекту знижений з 6 мм до 3 мм, а достовірність їх виявлення зросла на 17 -20%.Документ Розробка цифрового фотографічного методу теплового контролю металів при високих температурах(НТУ "ХПІ", 2015) Славков, Віктор МиколайовичДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.13 - прилади і методи контролю та визначення складу речовин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2015 р. Дисертацію присвячено розробці методу теплового контролю металів при температурах понад 600 °С із використанням, у якості детектора теплового випромінювання, цифрового фотоапарата. На основі встановлених теоретичних положень методу розроблені програмні алгоритми обробки цифрових зображень, що дозволили: провести процедуру калібрування цифрового фотоапарата у діапазоні яскравісних температур 500…1800 °С та встановити калібрувальні залежності у вигляді математичних рівнянь; здійснити тепловий контроль металевих пластин, об'ємних металевих зразків та встановити присутні в них дефекти; вирішити додаткові задачі теплового контролю металів, а саме встановити значення питомої масової теплоємності металу; моделювати рівномірні температурні поля на поверхні металевих пластин; встановити розподілення коефіцієнта теплового випромінювання поверхні металевих пластин.Документ Розробка цифрового фотографічного методу теплового контролю металів при високих температурах(НТУ "ХПІ", 2015) Славков, Віктор МиколайовичДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.11.13 - прилади і методи контролю та визначення складу речовин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2015 р. Дисертацію присвячено розробці методу теплового контролю металів при температурах понад 600 °С із використанням, у якості детектора теплового випромінювання, цифрового фотоапарата. На основі встановлених теоретичних положень методу розроблені програмні алгоритми обробки цифрових зображень, що дозволили: провести процедуру калібрування цифрового фотоапарата у діапазоні яскравісних температур 500…1800 °С та встановити калібрувальні залежності у вигляді математичних рівнянь; здійснити тепловий контроль металевих пластин, об'ємних металевих зразків та встановити присутні в них дефекти; вирішити додаткові задачі теплового контролю металів, а саме встановити значення питомої масової теплоємності металу; моделювати рівномірні температурні поля на поверхні металевих пластин; встановити розподілення коефіцієнта теплового випромінювання поверхні металевих пластин.