05.11.13 "Прилади і методи контролю та визначення складу речовин"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17000

Переглянути

Результати пошуку

Зараз показуємо 1 - 4 з 4
  • Ескіз
    Документ
    Розвиток методів та засобів для електромагнітно-акустичного контролю стрижневих, трубчастих та листових металовиробів
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Плєснецов, Сергій Юрійович
    Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.11.13 – Прилади і методи контролю та визначення складу речовин (15 – автоматизація та приладобудування). – НТУ "ХПІ", Харків, 2021. Дисертаційну роботу спрямовано на вирішення важливої науково-практичної проблеми зі створення основних положень збудження та прийому імпульсів ультразвукових поверхневих та нормальних хвиль в листах, трубах та стрижнях, виготовлених переважно з феромагнітного матеріалу, методів та засобів для контролю та діагностики таких металовиробів. В роботі проведено аналіз існуючих теоретичних, модельних та експериментальних досліджень, методів та засобів безконтактного електромагнітно-акустичного контролю металовиробів, визначені їх недоліки та можливості застосування для подальшого удосконалення методів та засобів контролю та діагностики. Визначено перспективність розробки та використання нових типів електромагнітно-акустичних перетворювачів (ЕМАП). Встановлено перспективність використання хвиль Релея, Лемба та хвиль нормального типу для дефектоскопії та діагностики. Підтверджено високу економічну ефективність використання електромагнітно-акустичних перетворювачів для контролю листів, труб та стрижнів, виготовлених переважно з феромагнітного матеріалу. Розроблено математичну модель електромагнітно-акустичного перетворення електромагнітної енергії в акустичну, переважно для феромагнітних металів, що містить пов'язані між собою хвильове рівняння, рівняння Максвелла і узагальнений закон Ома в диференціальній формі. У математичної моделі комплексно враховані характеристики електромагнітно-акустичного перетворювача, параметри збуджуваних сигналів і властивості досліджуваного матеріалу. На підставі встановлених зав'язків сформульовані концептуальні підходи щодо вирішення завдання конструювання ЕМА перетворювачів для збудження ультразвукових коливань. Визначено вихідні положення, необхідні і достатні для знаходження характеристик зсувів пружних коливань, збуджених способом електромагнітно-акустичного перетворення. Встановлено, що збільшення розмірів високочастотної котушки перетворювача призводить до звуження смуги збуджуваних частот, в якій відбувається ефективне перетворення електромагнітної енергії в енергію крутильних ультразвукових коливань. Проведено математичне моделювання прохідного електромагнітно-акустичного перетворювача для збудження крутильних недиспергуючих пружних коливань в трубчатоподобних феромагнітних виробах з урахуванням характеристик перетворювача, властивостей об'єкта досліджень і взаємного розташування ЕМАП і виробу, яким показана необхідність поетапного знаходження взаємопов'язаних електромагнітних полів в різних областях моделі ЕМАП з урахуванням всіх факторів, що впливають на конструкцію прохідного перетворювача. Знайдено рішення загального диференціального рівняння шляхом визначення значень електромагнітних полів в області між котушкою збудження перетворювача і трубчастим виробом. Визначена хвильова характеристика джерела змінного магнітного поля ЕМАП. Створено алгоритми перетворення сигналів, які реалізуються в процесі прийому та реєстрації ультразвукових хвиль в металах електромагнітним способом. Доведено теореми про наведений магнітний потік для металів неферомагнітної групи і феромагнетиків. На підставі цих теорем побудовані математичні моделі процесів реєстрації ультразвукових хвиль електромагнітним способом. Знайдено рішення диференційного рівняння вимушених крутильних коливань в електропровідному феромагнітному стрижні (трубці), попередньо намагніченому в окружному напрямку, у вигляді виразу для лінійної щільності зовнішніх моментів, що крутять. Отримано вираз для розрахунку амплітуд кутів поворотів поперечних перерізів у фронті розповсюджуючоїся бігучої недиспергуючої крутильної хвилі через абсолютну чутливість, коефіцієнт інтерференційних втрат і коефіцієнт втрат ефективності збудження крутильних хвиль, обумовлений вихровими струмами (скін-ефектом). Вираз враховує повний набір геометричних і фізико-механічних властивостей матеріалу полого феромагнітного стрижня, котушок і центрального провідника електричного струму, що дозволяє проектувати електромеханічні перетворювачі з урахуванням особливостей контрольованих трубчастих металовиробів. Визначено в явному вигляді вирази для розрахунку силових факторів, які виникають при електромагнітному збудженні ультразвукових хвиль в струмопровідному аксіально намагніченому скін-шарі феромагнетика. Виконано оцінку збільшення механічної жорсткості попередньо намагніченого феромагнетика за рахунок сумісної дії сил пружності і сил магнітної взаємодії між полюсами доменів в деформуємому тонкому шарі феромагнетика (ΔE-ефект). Визначено межі, при яких ΔE-ефект можна не враховувати у практичних розрахунках. На підставі оцінок числових значень ΔE-ефекту запропоновано метод послідовних наближень для розв'язання граничної задачі про перетворення високочастотного електромагнітного поля у поле пружних хвиль в мікротовщинних шарах металів феромагнітної групи. В роботі показано, що основний внесок у фізичне перетворення електромагнітного поля в ультразвукові коливання вносять пондеромоторні сили електромагнітного поля і сили Джоуля, які відповідають пружним деформаціям, що виникають в результаті прояву прямого магнітострикційного ефекту в мікротовщинному шарі феромагнітного металу. Встановлено, що при оптимальному виборі величини постійного поля підмагнічування, сили Джоуля чотирикратно перевершують пондеромоторні сили, створювані електромагнітним полем. Зворотно-пропорційний зв'язок частоти електромагнітного поля і товщини скін-шару феромагнітного матеріалу, в якому відбувається перетворення, дозволяє здійснювати пошаровий контроль і визначати фізичні і пружні властивості матеріалу шляхом зміни частоти струму, що живить сенсор. Радіально орієнтовані сили Джоуля в аксіально намагніченому тонкому поверхневому шарі феромагнетика на частотах порядку 1 МГц практично в 30 разів перевершують аксіально орієнтовані сили, тобто є домінуючими при формуванні ультразвукових високочастотних коливань. При виконанні роботи розроблено та створено макети генератора та підсилювача на базі силових IGBT транзисторів для живлення високочастотних електромеханічних перетворювачів, призначених для використання у складі вимірювальної, контрольної та діагностичної техніки та запропоновано варіант практичної реалізації генератора потужних радіоімпульсів струму на базі силових IGBT транзисторів типу IRG4PC50F, який забезпечує в котушці індуктивності високочастотного електромеханічного перетворювача струми величиною до 450 A в діапазоні частот 1...3 МГц при тривалості пакетного імпульсу живлення 1...20 періодів заповнення використовуваної частоти. Показано, що генератор потужних радіоімпульсів струму (ГПРС) забезпечує істотне збільшення струму в високочастотній котушці при живленні резонансного ЕМА перетворювача, підвищуючи таким чином коефіцієнт перетворення електромагнітної енергії в високочастотну механічну в електропровідних, неелектропровідних і феромагнітних виробах і матеріалах. Обґрунтовано концепцію побудови підсилювачів потужних високочастотних імпульсів з регульованими параметрами, призначених для застосування в системах безконтактного ультразвукового контролю і в установках, що використовують метод магнітного ядерного резонансу або електронного парамагнітного резонансу при дослідженнях організму людини, а також в вимірювальних приладах. Розроблено схемотехнічне рішення зі створення потужного високочастотного підсилювача зондуючого сигналу для живлення ЕМА перетворювача, який забезпечує на генеруючої обмотці датчика достатню напругу для збудження акустичного сигналу в умовах великого зазору між ЕМАП і об'єктом контролю. В ході виконання дисертаційної роботи розроблено фізичні основи створення безконтактних ультразвукових частотних сенсорів, що перетворюють високочастотне регульоване електромагнітне поле в поле пружних коливань в обсязі мікротовщинного шару електропровідного феромагнетика, що динамічно деформується з урахуванням зв'язаності пружних і магнітних полів, які дозволяють безконтактно контролювати і визначати фізичні властивості наноструктурованих і плівкових матеріалів за допомогою ультразвукових хвиль. Визначена роль внутрішнього магнітного поля в процесі формування рівня електричного сигналу на виході перетворювача-приймача ультразвукових хвиль. Показано, що ігнорування факту існування внутрішнього магнітного поля може привести до підвищеної (в десятки разів) оцінки рівня вихідного електричного сигналу перетворювача електромагнітного типу. Сукупність викладених принципів і методів становить теоретичну основу розрахунку перетворювачів електромагнітного типу в режимах збудження і прийому ультразвукових хвиль у феромагнітних металах і в металах неферомагнітної групи. Експериментально встановлена можливість виявлення дефектів глибиною 0,1…1,2 мм на поверхні та під поверхнею виробу імпульсами ультразвукових поверхневих хвиль, які збуджуються і приймаються електромагнітно-акустичними перетворювачами на відстанях до 8 м, залежно від стану поверхні виробу з плоскою або криволінійною поверхнею, при частотах ультразвукових коливань у діапазоні 0,2…1 МГц, тривалості зондуючих пакетних імпульсів 6-8 періодів частоти заповнення високочастотним струмом силою до 200 А в котушці ЕМАП. Показано, що дефекти під поверхнею металовиробів можуть виявлятися на глибинах залягання більших, ніж величина довжини хвилі Релея. Розроблено 12 методів ультразвукового контролю та 14 конструкцій електромагнітно-акустичних перетворювачів, які дозволяють проводити виявлення дефектів листів, труб та стрижнів невеликого діаметру. Розроблено фізико-математичну модель прохідного електромагнітно-акустичного перетворювача для збудження (прийому) крутильних недиспергуючих пружних коливань. Основу моделі складають дві зустрічно включених по магнітному полю котушки і джерело магнітного поля у вигляді провідника зі струмом. У розробленій моделі враховано вплив геометричних розмірів котушок перетворювача і виробу, їх взаємного розташування, а також фізико-механічних характеристик матеріалу досліджуваного металовиробу. Перетворювачі такого типу призначені для контролю якості, діагностики, вимірювання фізико-механічних характеристик матеріалу трубчастих металовиробів.
  • Ескіз
    Документ
    Розвиток методів та засобів для електромагнітно-акустичного контролю стрижневих, трубчастих та листових металовиробів
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Плєснецов, Сергій Юрійович
    Дисертація на здобуття вченого ступеня доктора технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет "Харківський політехнічний інститут", Харків, 2021. В дисертаційній роботі вирішено актуальну науково-практичну проблему – розвиток теоретичних положень та засобів для збудження високочастотних ультразвукових імпульсів електромагнітно-акустичними перетворювачами у трубчастих, стрижневих та листових металовиробах з підвищеною чутливістю за рахунок збільшення відношення амплітуд корисного сигналу до завад. У дисертаційній роботі вперше розроблена математична модель електромагнітно-акустичного перетворювача, призначеного для збудження ультразвукових коливань в електропровідному виробі, за допомогою якої вирішені дві задачі електростатики та динамічної теорії пружності для кусково-однорідного середовища. Експериментально побудовані діаграми спрямованості акустичного поля та визначені основні фактори, які впливають на інтенсивність ультразвукових імпульсів, що збуджуються електромагнітно-акустичним перетворювачем. Розроблені нові конструкції електромагнітно-акустичних перетворювачів, призначених для контролю металовиробів різними типами ультразвукових хвиль. Застосування даних перетворювачів дозволить значно підвищити відношення сигнал/завада. Експериментально підтверджена можливість збудження поверхневих хвиль Релея та Лемба, а також крутильних хвиль перетворювачами з інтенсивністю ультразвукового поля, достатньою для проведення вимірювань, контролю та діагностики. Практичне значення роботи полягає в наступному: реалізовано теоретичну модель, яка дозволяє виконувати розрахунки параметрів і характеристик електромагнітно-акустичних перетворювачів суміщеного та роздільного типу; розроблено, виконано та випробувано стендові макети електромагнітно-акустичних перетворювачів, що практично реалізують теоретичну модель та доводять її ефективність; розроблено електромагнітно-акустичні перетворювачі для контролю різних зразків в межах сортаментів стрижневих, трубчастих та листових металовиробів для різних типів та етапів виробництва та експлуатації крутильними хвилями, хвилями Релея та Лемба на поверхні та всередині об'єктів контролю; створено методики контролю з використанням розроблених конфігурацій перетворювачів та практичні рекомендації з їх використання; розроблено та впроваджено технічні рішення, спрямовані на підвищення якості та ефективності використання електромагнітно-акустичного методу в виробництві. Розроблено нові технічні рішення, що спрямовані на підвищення чутливості ультразвукових електромагнітно-акустичних приладів і пристроїв на основі збільшення відношення амплітуд корисного сигналу до завад у виробах з електропровідних матеріалів. Новизна технічних рішень захищена патентом України на винахід та 25 патентами України на корисну модель.
  • Ескіз
    Документ
    Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Салам, Буссі
    Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.11.13 «Прилади і методи контролю та визначення складу речовин» – Національний технічний університет «Харківський політехнічний інститут». Дисертація присвячена розробці нових ультразвукових електромагнітно-акустичних перетворювачів з джерелом імпульсного поляризуючого магнітного поля, методів підвищення чутливості контролю та діагностики металовиробів з використанням перетворювачів такого типу. Виконано аналітичний огляд та аналіз сучасних засобів і методів контролю та діагностики електромагнітно-акустичним методом [1–3] феромагнітних і електропровідних або тільки електропровідних виробів в умовах дії постійних та імпульсних поляризуючих магнітних полів з урахуванням наявності когерентних завад різного типу, технічного рівня сучасних електромагнітно – акустичних перетворювачів, схемотехнічних рішень засобів їх живлення, прийому з виробів ультразвукових імпульсів та їх обробки, визначення відомих переваг, недоліків та можливостей використання в дослідженнях і розробках. Визначені та обґрунтовані напрямки дисертаційного дослідження: розробка електромагнітно-акустичного перетворювача у вигляді спрощеної одновиткової моделі [4] джерела магнітного поляризуючого поля з феромагнітним осердям та високочастотною котушкою, яка розміщена між осердям та металовиробом; шляхом моделювання [5] розподілення індукції поляризуючого магнітного поля на торці осердя джерела магнітного поля та в поверхневому шарі як феромагнітного так і неферомагнітного металовиробу визначено особливості розташування високочастотної котушки індуктивності під джерелом магнітного поля для ефективного збудження зсувних ультразвукових імпульсів (в центральній частині торця феромагнітного осердя) або поздовжніх ультразвукових імпульсів (біля периферійної частини торця феромагнітного осердя) [6]. Збільшення кількості витків котушки намагнічування при наявності феромагнітного осердя призводить до значного збільшення часу перехідних процесів при включенні живлення імпульсного джерела поляризуючого магнітного поля і при його виключенні. В результаті час дії імпульсу живлення збільшується до 1 мс і більше, що призводить до збільшення сили притягування ЕМАП до феромагнітного виробу, додаткових втрат електроенергії, погіршенню температурного режиму перетворювача. Для зменшення часу дії імпульсу живлення джерела магнітного поля необхідно зменшувати кількість витків котушки намагнічування, але це призводить до зменшення величини магнітної індукції навіть при наявності феромагнітного осердя. В результаті раціонального вибору конструкції джерела магнітного поля встановлена необхідність виконання його котушки намагнічування плоскою двовіконною трьохвитковою і виготовляти з високоелектропровідного високотеплопровідного матеріалу [7-9]. Осердя повинно бути розміщено в вікнах котушки намагнічування тільки торцями. В результаті час дії імпульсу намагнічування зменшено до 200 мкс, що достатньо для контролю виробів товщиною до 300 мм. Високочастотна котушка індуктивності виконана з двома лінійними робочими ділянками, які розташовуються під вікнами котушки намагнічування [9]. При протилежних напрямках високочастотного струму в цих робочих ділянках в поверхневому шарі виробу збуджуються синфазні потужні імпульси зсувних ультразвукових хвиль. При цьому відношення збуджуваних амплітуд зсувних та поздовжніх імпульсів перевищує 30 дБ. Тобто когерентні імпульси поздовжніх хвиль при контролі луна методом практично не будуть впливати на результати діагностики феромагнітних виробів. Розроблені варіанти конструкцій електромагнітно-акустичних перетворювачів з одновитковими [7], двовитковими [8] та трьохвитковими [9] котушками намагнічування джерела імпульсного поляризуючого магнітного поля. При одновитковій котушці [7] перехідні процеси при включенні імпульсу живлення мінімальні. Проте необхідно збуджувати в котушці струм з силою в кілька кА, що ускладнює температурний режим перетворювача та апаратуру живлення. При трьохвитковій котушці [9] намагнічування амплітуда донних імпульсів по відношенню до амплітуди завад перевищує 24 дБ, що дозволяє проводити контроль та діагностику значної кількості металовиробів. При використанні шихтованого осердя [9] відношення амплітуд корисного сигналу і шуму збільшилося до 38 дБ, що дає можливість проводити ультразвуковий контроль лунаметодом. Розроблено метод [10 ] ультразвукового електромагнітно- акустичного контролю феромагнітних виробів, суть якого заключається в збудженні ультразвукових імпульсів шляхом формування в поверхневому шарі феромагнітного виробу двох рядом розташованих короткочасно намагнічених ділянок з протилежним напрямком векторів магнітної індукції поляризуючого поля, збудженні в намагнічених ділянках пакетних імпульсів електромагнітного поля з протилежно направленими векторами напруженості тривалістю в кілька періодів високої частоти заповнення, при цьому збудження імпульсів електромагнітного поля виконують в момент часу, який дорівнює часу перехідних процесів з встановлення робочої величини індукції поляризуючого магнітного поля, а прийом ультразвукових імпульсів відбитих з виробу виконується в період часу tпр, який визначається за виразом T – t1 – t2 – t3 < tпр = t1 + t2 + t3 + 2H/C, де Т – тривалість імпульсу намагнічування; t1 – час перехідних процесів з встановлення робочої величини індукції поляризуючого магнітного поля; t2 – час дії пакетного імпульсу електромагнітного поля; t3 – час затухаючих коливань в плоскій високочастотній котушці індуктивності; Н – товщина виробу або відстань в об’ємі виробу, які підлягають ультразвуковому контролю; С – швидкість поширення зсувних ультразвукових хвиль в матеріалі виробу. Встановлено [9] [9], що завади в феромагнітному осерді, обумовлені ефектом Баркгаузена та магнітострикційним перетворенням електромагнітної енергії в ультразвукову при збудженні ультразвукових імпульсів, практично виключаються за рахунок виготовлення осердя шихтованим, матеріал пластин осердя повинен мати низький коефіцієнт магнітострикційного перетворення, пластини осердя повинні бути орієнтовані перпендикулярно провідникам робочих ділянок плоскої високочастотної котушки індуктивності, а також заповненням щілин між пластинами осердя рідиною із значною густиною, наприклад гліцерином. Показано, що чутливість прямих ЕМА перетворювачів з імпульсним намагнічуванням при живленні розробленим генератором пакетних зондуючих високочастотних імпульсів [11 ] та прийомі малошумлячим підсилювачем [12 ] забезпечують виявлення плоскодонних відбивачів діаметром 3 мм і більше при частоті зондування 40 Гц, піковому високочастотному струмі 120 А, частоті зсувних лінійно поляризованих ультразвукових коливань 2,3 МГц, тривалості високочастотного пакетного імпульсу 6…7 періодів частоти заповнення, тривалості імпульсу намагнічування 200 мкс, густині струму намагнічування 600 А/мм2 та при зазорі між ЕМАП і виробом 0,2 мм [9] [9]. При цьому амплітуда луна імпульсу відбитого від дефекту по відношенню до амплітуди завад досягає 20 дБ. Розроблені ЕМАП захищені 2 патентами на корисну модель.
  • Ескіз
    Документ
    Електромагнітно-акустичні перетворювачі для ультразвукового контролю металовиробів
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Салам, Буссі
    Дисертація на здобуття вченого ступеня кандидата технічних наук за спеціальністю 05.11.13 – прилади і методи контролю та визначення складу речовин. Національний технічний університет «Харківський політехнічний інститут», Харків, 2020. В дисертаційній роботі вирішено актуальну науково-практичну задачу з розробки нових типів ЕМАП для ефективного ультразвукового контролю металовиробів. В роботі виконано комп’ютерне моделювання розподілу магнітних полів ЕМАП при імпульсному намагнічуванні феромагнітних та немагнітних виробів. Встановлені шляхи побудови перетворювачів з максимальною чутливістю. Розроблено метод збудження імпульсних пакетних ультразвукових імпульсів за рахунок послідовного в часі формування імпульсного магнітного та електромагнітного полів. Розроблено технічні рішення пригнічення когерентних завад в осерді та у виробі. Визначені геометричні та конструктивні параметри джерела імпульсного магнітного поля, що дало можливість збуджувати потужні синфазні пакетні імпульси високочастотних зсувних коливань в ОК. Показано, що чутливість прямих ЕМА перетворювачів з імпульсним намагнічуванням забезпечують виявлення плоскодонних відбивачів діаметром 3 мм і більше при частоті зондування 40 Гц, частоті зсувних лінійно поляризованих ультразвукових коливань 2,3 МГц, піковому струмі високочастотних пакетних імпульсів 120 А, тривалості пакетних високочастотних імпульсів струму в 6 періодів частоти заповнення, тривалості імпульсу намагнічування 200 мкс, щільності струму намагнічування 600 А/мм2 та при зазорі між ЕМАП і виробом 0,2 мм. При цьому амплітуда луна-імпульсу від дефекту по відношенню до амплітуди завад досягає 20 дБ, що дає можливість забезпечити якісну дефектоскопію металовиробів.