05.05.16 "Турбомашини та турбоустановки"

Постійне посилання зібрання

Переглянути

Нові надходження

Зараз показуємо 1 - 14 з 14
  • Документ
    Науково-методологічні основи енергозбереження на базі турбоустановок малої потужності при утилізації вторинних енергетичних ресурсів
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Сенецький, Олександр Володимирович
    Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.05.16 "Турбомашини та турбоустановки" (142 – Енергетичне машинобудування) – Харківський національний університет міського господарства імені О. М. Бекетова; Національний технічний університет "Харківський політехнічний інститут", Харків, 2020. Дорожчання викопних паливних ресурсів (газ, нафта, вугілля) призводить до більших витрат грошових коштів на промислових підприємствах, що використовують теплову енергію палива. Це у свою чергу змушує змінити ставлення до вторинних енергетичних ресурсів (ВЕР) та, відповідно, енергії малого потенціалу, що скидається до навколишнього середовища, в різних галузях економіки України (комунальна енергетика, промисловість, газотранспортна система та інші). При виконанні завдань корисного використання ВЕР та відповідно впровадження енергозберігаючих заходів на об’єктах, що мають потенціал джерел скидної теплоти малого та низького потенціалу, який може використовуватися на основі впровадження циклів, які працюють на різних робочих тілах з турбінними установками, важливим є максимальна економічність роботи установки незалежно від режиму експлуатації. Реалізація електрогенеруючих установок малої потужності дозволить впровадити сучасну європейську стратегію децентралізації в енергетиці, регулювати піки енергетичної системи, використовувати наявний потенціал енергозбереження і поновлювані паливні ресурси, зупиняти потужні енергетичні блоки на поточний та капітальний ремонти. Чи не маловажним також є не тільки розробка концепції генерації енергії з використанням відновлюваних паливних ресурсів і вторинних енергетичних ресурсів, а й нових підходів до створення високоефективного енергетичного устаткування і технологічних схем виробництва теплової та електричної енергії з урахуванням особливостей енергоспоживаючих об’єктів. Існуючі підходи до розв’язання задачі енергозбереження є роздрібненими. Таким чином, узагальнення існуючих та створення сучасних енергозберігаючих рішень у різних галузях економіки України на об’єктах скидної енергії малого потенціалу та при спалюванні відновлювальних паливних ресурсів на основі впровадження турбоустановок малої потужності на різних робочих тілах на базі науково обґрунтованого комплексного методологічного підходу є вельми актуальною проблемою. Мета дисертаційної роботи полягає у підвищенні ефективності використання паливно-енергетичних ресурсів на основі науково обґрунтованої методології створення когенераційних технологій при утилізації вторинних енергетичних ресурсів та впровадження турбоустановок малої потужності, що працюють на різних робочих тілах. Створено комплексний науково-методологічного підхід до розв’язання задач енергозбереження при використанні турбінних циклів на різних робочих тілах. Запропонований науково-методологічний підхід базується на теоретичному обґрунтуванні закономірностей, виявленні зв’язків та побудові структурованої послідовності щодо проведення досліджень з визначення доцільності впровадження енергозбереження на основі реалізації турбінних циклів за рахунок утилізації ВЕР. Це дозволило систематизувати існуючі роздрібнені підходи та розробити підхід, при якому будь-яка система (об’єкт) розглядається як сукупність взаємопов’язаних елементів (компонентів), що має вхід (ресурси), зв’язок із зовнішніми факторами, зворотний зв’язок між компонентами та вихідний результат (мета). Згідно теорії пізнання запропонований комплексний науково-методологічний підхід базується на фундаментальних наукових засадах на відміну від техніко-економічного обґрунтування (ТЕО), яке носить приватний та прикладний характер. Формування науково обґрунтованої методології вибору низькокиплячих робочих тіл (НРТ) і теплових схем турбінних циклів, в залежності від потенціалу вторинних енергетичних ресурсів для вироблення електричної енергії, є вкрай важливим при підвищенні енергоефективності технологічних процесів підприємств різних галузей економіки України. Така методологія дозволяє визначити витратні та параметричні характеристики основних потоків теплоти, вибрати на підставі цих характеристик основне й допоміжне обладнання, потужність і геометрію складових елементів теплових схем в залежності від потенціалу теплового джерела і режиму його роботи. Побудовано та запропоновано ієрархічну структуру комплексного науково-методологічного підходу до розв’язання цієї задачі включає у себе певну послідовність аналізу та розрахунку існуючих об’єктів, вибору та рекомендацій щодо впровадження енергозберігаючих технічних рішень. Сформований комплексний науково-методологічний підхід узагальнює існуючі та розроблені у роботі математичні моделі та методи для створення енергозберігаючих технологій з використанням турбін малої потужності на об’єктах економіки України. Згідно наведеної структури виконується відповідна послідовність розрахункових досліджень з визначення доцільності впровадження енергозберігаючого заходу та визначення масогабаритних і термогазодинамічних характеристик елементів теплової схеми. Дослідження об’єкту, який має у своєму складі ВЕР з подальшою їх утилізацією, починаються з першого ієрархічного рівня – техніко-економічного обґрунтування. Для початку виконання ТЕО необхідні вихідні дані: знання перспективних енергозберігаючих заходів при використанні ВЕР; наявні ВЕР (горючі, теплові та надлишкового тиску); потенційні споживачі холоду, теплової та електричної енергії; наявність технічної можливості реалізації проекту (споруд або території для будівництва). Проведення ТЕО потребує врахування властивостей робочих тіл, що використовуються у турбінних циклах та особливостей формування теплових схем для максимально точного визначення енергетичних характеристик установок. Виконано комплексний аналіз існуючих підходів до вибору робочих тіл. Це дозволило вперше узагальнити та сформувати критерії, яким вони повинні відповідати при використанні у енергогенеруючих установках. Реалізація турбінних циклів на НРТ при використанні скидної теплоти технологічних процесів і спалюванні відновлюваних паливних ресурсів дозволить виконати децентралізацію енергопостачання і забезпечити підприємства власною електричною енергією в повному обсязі або частково. Вибір структури теплової схеми, в залежності від потенціалу теплового джерела, грає важливу роль у формуванні енергоефективної тепло-, холодо- і електрогенеруючої установки. Вибір елементів теплової схеми відіграє важливу роль у виробленні теплової та електричної енергії, отже, кожен з них повинен бути підібраний під існуючі режими роботи енергетичної установки, що дозволить максимально ефективно використовувати паливно-енергетичні ресурси. Правильно оцінені витратні, газодинамічні та геометричні характеристики теплообмінного, турбінного і насосного обладнання дозволять вибрати з наявних або спроектувати нові складові об’єкти енергогенеруючої теплової схеми з характеристиками, що максимально підходять під умови експлуатації. Саме моделювання елементів теплової схеми дозволить в найкоротші терміни і з мінімальними витратами коштів оцінити масогабаритні та витратні характеристики теплообмінного, турбінного й насосного обладнання, і в свою чергу реалізувати раціональну енергогенеруючу установку. Необхідно відзначити, що в кожному окремому випадку здійснюється індивідуальний підхід з урахуванням обмежень, що пред’являються до теплообмінного, турбінного та насосного обладнання. Досліджено можливість утилізації теплової енергії, одержуваної від котла на біомасі, за допомогою когенераційної енергоустановки на базі турбінного циклу з НРТ, яка запропонована для автономного електро- і теплопостачання громадських будівель невеликих населених пунктів. Досліджено можливості підвищення електричного ККД енергоустановки за рахунок двокаскадного турбінного циклу на НРТ. Аналізувалося два варіанти реалізації теплової схеми енергоустановки: з відпустком теплоти температурою 70 °С (як при ГВП) й чисто конденсаційний режим. Як показали розрахунки, для досліджених робочих тіл при схемі для ГВП електрична потужність, що генерується 2-м каскадом у 4 рази менша, ніж першого каскаду, при конденсаційному режимі у 2 рази менша. Розрахункові дослідження показали, що при питомій ціні інвестиції 2000 USD/кВт, міні-ТЕЦ з встановленою електричною потужністю 110 кВт має термін окупності 3,2 роки при ціні на умовне паливо до 40 USD/т і цінах на електроенергію 2,2 грн/(кВт·год) і теплоту 2200 грн /Гкал. Якщо встановлена електрична потужність міні-ТЕЦ 440 кВт (340 кВт перший ORC контур і 100 кВт – другий) при цих же цінах на енергоносії той же строк окупності буде досягнуто вже при ціні на умовне паливо до 70 USD/т. Таким чином, проект міні-ТЕЦ на біомасі потужністю 110 кВт важко вважати перспективним для реалізації, доцільно реалізовувати міні-ТЕЦ, починаючи з електричної потужності 440 – 550 кВт, простий термін окупності такої станції при сучасних цінах на енергоносії складе 2,7 – 4 роки в залежності від питомої вартості обладнання. Розв’язано задачу підвищення ефективності використання теплоти димових газів об’єктів комунальної енергетики з урахуванням фактичних режимів експлуатації котельного устаткування для виробництва електричної енергії на основі реалізації замкнених паротурбінних циклів на НРТ. Проведено дослідження щодо вибору НРТ, що застосовуються в ORC контурах. Виконано розрахункові дослідження з оцінки рівня одержуваної електричної потужності при реалізації НРТ турбін на прикладі котельного агрегату. Розрахункові дослідження показали, що використання теплоти димових газів, без додаткового спалювання палива, обмежує максимальні температури НРТ і не дозволяє досягти максимальної потужності енергетичної установки ORC контуру через малий тепловий перепад, що припадає на турбіну. Більшу кількість теплоти можливо зняти тільки за рахунок збільшення витрати низькокиплячого робочого тіла, що є не завжди виправданим. Збільшення витрат робочого тіла тягне за собою збільшення масогабаритних характеристик теплообмінного, допоміжного та турбінного обладнання. На сучасному етапі розвитку замкнених паротурбінних циклів на НРТ, доцільним є вибір варіанта, який дозволить покривати власні потреби котельні в електричній енергії на рівні 5 – 10 % без додаткового спалювання палива. Виконувалося завдання з визначення техніко-економічних показників електрогенеруючої установки, що використовує теплоту димових газів та частково теплоту сітьової води комунальної водогрійної котельні на основі замкненого паротурбінного циклу на НРТ. При використання режимних карт міської котельні, що має у своєму складі чотири потужні водогрійні котли ПТВМ-100, розрахунковим шляхом показано, що при інвестиціях 792 тис. USD на енергоустановку відповідної потужності при існуючих цінах на енергоносії простий термін окупності складе 32 місяців (без урахування строку реалізації проекту). Збільшення потужності ORC відбувалося за рахунок відбирання частки теплоти від сітьової води (за умови збереження теплового навантаження) температура якої піднімалася шляхом допалювання природного газу. Збільшення терміну окупності проекту за незначного збільшення потужності енергетичної установки пов’язано з тим, що основний зиск від реалізації проекту полягає в економії природного газу при підігріві зворотної сітьової води низькокиплячим робочим тілом. Отримані результати показали, що при сучасних цінах на енергоносії, теплову та електричну енергії додаткове спалювання природного газу для виробництва електроенергії в ORC контурі є можливим лише за умови не перевищення терміну окупності проекту три роки. Результати проведених розрахункових досліджень з впровадження сумісної роботи утилізаційної турбодетандерної установки (УТДУ) та повітряної кліматичної системи (ПКС) на газорозподільних станціях (ГРС) показали, що використання на газорозподільній станції УТДУ спільно з ПКС дозволить ефективно використовувати енергетичний потенціал стисненого природного газу для обігріву приміщень станції та для підігріву природного газу після турбодетандера без використання зовнішніх енергоресурсів. Ключовим аргументом забезпечення енерго- і ресурсозбереження на ГРС за рахунок впровадження розробленої схеми є істотна економія природного газу, а також, що важливо, підвищення екологічної безпеки станції за рахунок відсутності викидів до атмосферного повітря продуктів горіння природного газу котлами. Необхідно відзначити, що УТДУ та ПКС працюють протягом усього року. У зимовий період (при мінус 25 °С) УТДУ дозволяє покрити власні потреби повітряної кліматичної системи, але у теплу пору року (при плюс 35 °С) виробляти надлишкову електричну енергію у кількості більш ніж 70 кВт, при забезпеченні кондиціонування приміщень. Період окупності запропонованого рішення в режимі підігріву (165 днів) та кондиціонування (160 днів) становить 4 – 5 років. Також у роботі проведено розрахункові дослідження з оцінки доцільності впровадження на ГРС зі споживачами різного тиску турбодетандеру осьового типу з проміжними відборами природного газу. Впровадження турбодетандерів осьового типу з проміжними відборами газу дозволить у повній мірі використовувати перепад тиску, а не тільки до найбільшого необхідного тиску (до менших значень газ дроселюється), як це реалізується на теперішній час. Ефективність роботи проточної частини турбодетандера такого тип при змінному режимі експлуатації у середньому 81 %, потужність при максимальному та мінімальному навантаженні становить 2678 кВт та 595 кВт, відповідно. Одержані в дисертаційній роботі результати наукових досліджень передані для подальшого використання до КП «Харківські теплові мережі» (м. Харків); ПАТ «Харківська ТЕЦ-5» (м. Харків); ПАТ «Турбогаз» (м. Харків). Методи та програмні засоби, що розроблені, застосовуються при виконанні науково-дослідних робіт у відділі оптимізації процесів і конструкції турбомашин Інституту проблем машинобудування ім. А.М. Підгорного НАН України (м. Харків) та проведенні учбового процесу підготовки бакалаврів і магістрів кафедри альтернативної електроенергетики та електротехніки Харківського національного університету міського господарства імені О.М. Бекетова та кафедри теплоенергетики і енергозберігаючих технологій Української інженерно-педагогічної академії (м. Харків).
  • Документ
    Науково-методологічні основи енергозбереження на базі турбоустановок малої потужності при утилізації вторинних енергетичних ресурсів
    (Харківський національний університет міського господарства ім. О. М. Бекетова, 2021) Сенецький, Олександр Володимирович
    Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.05.16 – турбомашини та турбоустановки. – Національний технічний університет "Харківський політехнічний інститут", м. Харків, 2020. Дисертацію присвячено науковому обґрунтуванню і розробці методологічного підходу енергозберігаючих заходів щодо підвищення ефективності використання паливно-енергетичних ресурсів при виробництві теплової та електричної енергії на базі застосування турбоустановок малої потужності на різних робочих тілах. Обґрунтовано доцільність розв’язання задачі ресурсо- та енергозбереження шляхом реалізації турбінних установок на об’єктах скидної енергії малого потенціалу та при спалюванні відновлювальних паливних ресурсів. Проаналізовано особливості ORC технології, а також властивості робочих тіл, що застосовуються при розв’язанні подібних задач. На основі проведеного аналізу літературних джерел виконано узагальнення підходів щодо формування критеріїв вибору низькокиплячих робочих тіл для замкнених паротурбінних циклів. Вдосконалено та адаптовано математичну модель розрахунку теплових схем та їх складових елементів (теплообмінні апарати і турбіна) для розв’язання поставлених задач з врахуванням властивостей теплоносіїв. За допомогою вдосконаленого програмного комплексу виконано комплексні розрахункові дослідження, що дало можливість запропонувати нові рішення щодо компоновки теплових схем та визначення витратних й геометричних характеристик основних елементів енергогенеруючої установки (теплообмінники і турбіна). При цьому на кожному етапі розв’язувалась задача пошуку найбільш підходящого робочого тіла, раціональної компоновки турбінного циклу та вибору найбільш економічної конструкції турбіни і теплообмінників за умови врахування режимів роботи основного технологічного процесу та енергетичної установки, що реалізується. Отримані результати можуть бути застосовані при розв’язанні задач утилізації ВЕР різних типів (горючих, теплових та надлишкового тиску) у комунальній енергетиці, газотранспортній системі, індивідуальних господарствах та інших сферах економіки держави. Це дозволяє комплексно підходити до розв’язання задачі ефективного використання паливно-енергетичних ресурсів, що є вельми актуальним на сучасному етапі розвитку України. Для запропонованих рішень виконано техніко-економічне обґрунтування доцільності впровадження енергозберігаючих технологій на базі турбоустановок малої потужності при використанні ВЕР.
  • Документ
    Розвиток методів розрахунку охолодження обертових елементів газових турбін
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Михайлова, Ірина Олександрівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.05.16 "Турбомашини та турбоустановки", (технічні науки). – Національний технічний університету "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2018. Дисертацію присвячено вирішенню важливої науково-технічної задачі вдосконалення систем охолодження газових турбін шляхом подальшого розвитку методів гідравлічного і теплового розрахунку каналів системи охолодження газових турбін. Вивченню структури і властивості потоку в цих елементах, отриманню залежностей, описуючих цей потік. Виконано аналіз науково-технічної літератури, присвяченій проектуванню систем охолодження ГТД, в якому розглянуто міжнародний досвід експериментальних досліджень і обчислювальних експериментів, що до дослідження теплообміну і гідродинаміки течії в обертових елементах. В результаті аналізу літератури показано що, основним напрямом розвитку ефективних і надійних систем охолодження ГТД є підвищення точності розрахунку витратних і гідравлічних характеристик елементів системи охолодження. Показано, що на моделювання процесів впливає геометрія каналу, направлення течії (відцентрове, доцентрове), наявність супутних потоків, параметри і властивості (повітря, масло-повітря) охолоджуючого середовища. Тому від точності, з якою буде змодельований окремий елемент, залежить надійність моделювання всієї системи охолодження. Проведено адаптацію математичних моделей елементів гідравлічних мереж для розрахунку систем охолодження газових турбін, таких як: апарат закручування потоку (АЗ), теплообмінник, канали, що переміщуються. Наведено опис, теоретичні основи моделювання цих елементів гідравлічної схеми, проведені чисельні дослідження по впливу апарата закручування і теплообмінника на ефективність охолодження, складені відповідні моделі систем охолодження. Встановлено, що ефективність охолодження при застосуванні АЗ збільшується на 15%. Запропоновано підхід включення в загальну гідравлічну схему теплообмінника, при загальному наборі початкових даних, які відображають роботу теплообмінника в змінному режимі. Проведено дослідження впливу відцентрового ефекту на можливість подачі повітря в порожнини ротора турбіни. Розглянуті приклади течії повітря в порожнинах, утворених двома паралельними дисками з осьовою або радіальною подачею повітря на периферійному радіусі. Проведений CFD аналіз показав, що в залежності від напрямку подачі повітря істотно змінюється характер течії в порожнині. При радіальній подачі повітря в напрямку осі обертання має місце безвихровий характер течії, при осьовій - з'являється вихор. Проте, відмінність в характері течії майже не позначається на величині протитиску, який перешкоджає переміщенню повітря. Визначено діапазон достовірності результатів методу розрахунку насосного ефекту в придискових порожнинах роторів газових турбін, а саме: відношення ширини порожнини до зовнішнього радіуса диска не перевищує величину 0,17, що дозволяє обґрунтовано використовувати цей метод для розрахунків систем охолодження. Розроблено узагальнений підхід до методу розрахунку коефіцієнтів витрати і гідравлічного опору елементів систем охолодження газових турбін таких, як отвори, потовщені діафрагми, лабіринтові ущільнення, які регламентують витрату охолоджуючого повітря і відповідають за надійність і економічність системи охолодження. Так як розрахунок гідравлічної схеми застосовує коефіцієнти гідравлічного опору кожної ділянки схеми, а експериментальні дані часто представленні коефіцієнтами витрати, тому встановлено зв'язок між ними за допомогою припущень, які враховують різницю між стисливим і нестисливим середовищами. На основі проведених досліджень, обґрунтовано поправку на стисливість до коефіцієнту гідравлічного опору подовжених діафрагм, отворів, лабіринтових ущільнень, яка уточнює коефіцієнт гідравлічного опору до 25%. Розроблено математичну модель розрахунку підшипника, описані підходи до визначення концентрації і термодинамічних характеристик двофазного гомогенного середовища, що дозволило включити підшипник як в гідравлічну, так і теплову моделі систем охолодження газових турбін. Розроблено метод розрахунку гідравлічної мережі для маслоповітряної суміші, який істотно розширив можливості моделювання процесів охолодження роторів і підшипників газових турбін і маслозабезпечення підшипників, що дозволило провести спільний розрахунок системи охолодження ротора турбіни і підшипників. Проведено дослідження системи охолодження ротора високотемпературної газової турбіни за допомогою розроблених методів розрахунку. Встановлено, що методи розрахунку відповідають робочим даним газотурбінного двигуна Д 36.
  • Документ
    Розвиток методів розрахунку охолодження обертових елементів газових турбін
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Михайлова, Ірина Олександрівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.16 – турбомашини та турбоустановки, (технічні науки). – Національний технічний університету "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2018. Розроблено методи розрахунку повітряного охолодження і систем маслозабезпечення, які дозволяють отримати якісно нові результати, що сприяють підвищенню надійності проектування системи охолодження ГТУ. Удосконалено метод розрахунку повітряного охолодження за рахунок введення нових елементів таких, як апарат закручування, теплообмінник які розширюють можливості проектування системи охолодження ГТУ і ГТД. Набув подальший розвиток метод розрахунку гідравлічних мереж систем охолодження газових турбін з урахуванням закручування потоку в міждискових порожнинах. Обґрунтовано надійне застосування методу розрахунку насосного ефекту в придискових порожнинах роторів в діапазоні відношення ширини до зовнішнього радіусу диска s/r₂ = 0,17. Розвинений метод розрахунку гідравлічного опору подовжених діафрагм, отворів, лабіринтових ущільнень з урахуванням стисливості середовища Обґрунтовано поправку на стисливість до коефіцієнту гідравлічного опору, що уточнює коефіцієнт гідравлічного опору до 25%. Розроблена сумісна математична модель і метод розрахунку гідравлічного опору двофазного гомогенного середовища, що дозволяє моделювати процеси охолодження і маслозабезпечення в межах загального методу гідравлічного розрахунку системи охолодження, і проводити спільний розрахунок системи охолодження ротора турбіни і підшипників.
  • Документ
    Пространственная аэродинамическая оптимизация направляющей решетки осевой турбины
    (НТУ "ХПИ", 2016) Баранник, Валентин Сергеевич
    Диссертация на соискание ученой степени кандидата технических наук по специальности 05.05.16 – турбомашины и турбоустановки. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2016. Диссертация посвящена разработке методики пространственной аэродинамической оптимизации направляющих решеток осевых турбин путем поиска оптимальных формы профилей и меридиональных обводов межлопаточных каналов. Использование данной методики позволяет при решении оптимизационной задачи учесть дополнительные резервы повышения эффективности. Поиск оптимального варианта осуществлялся с использованием теории планирования эксперимента и ЛПτ – последовательности. Для описания полимодальных целевых функций исходная формальная макромодель в виде полного квадратичного полинома была уточнена путем замены суперпозиции параболы на суперпозицию кубического интерполяционного сплайна. На основе разработанной методики проведена оптимизация направляющей решетки третьей степени мощной паровой турбины с постоянным по высоте профилем при построении его различными типами кривых. Анализ результатов оптимизации показал, что наибольшее снижение интегральных потерь составило 7% в относительных величинах. Снижение потерь было достигнуто, как в ядре потока, так и в области вторичных течений. Существенно влиять на структуру течения в турбинных решетках, а следовательно получать дополнительных выигрыш при постановке оптимизационной задачи позволяет меридиональное профилирование поверхностей межлопаточного канала. Оптимизация периферийного меридионального обвода с помощью разработанного метода позволила дополнительно снизить интегральные потери 1,4%. в относительных величинах. Построение формы меридионального обвода осуществляется с использованием кривых Безье 4-го порядка для решеток без раскрытия и 3-го порядка – для решеток с раскрытием. Использование лопатки переменного по высоте профиля при постановке оптимизационной задачи также позволяет снизить интегральные потери.
  • Документ
    Просторова аеродинамічна оптимізація направляючої решітки осьової турбіни
    (НТУ "ХПІ", 2016) Бараннік, Валентин Сергійович
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.16 – турбомашини та турбоустановки. – національний технічний університет "Харківський політехнічний інститут", Харків, 2016. Дисертація присвячена розробці методики просторової аеродинамічної оптимізації напрямних решіток осьових турбін шляхом пошуку оптимальних форми профілів та меридіональних обводів міжлопаткових каналів. Використання даної методики дозволяє при постановці оптимізаційної задачі врахувати додаткові резерви підвищення ефективності. При реалізації цієї методики було виконано проектування турбінних профілів з використанням різного роду кривих. Для кожного типу кривої визначені її параметри управління, що дозволяють в широких межах варіювати геометрію профілю. Достовірність отриманих результатів підтверджується проведеною верифікацією на направляючій та робочій решітці. На основі розробленої методики проведено оптимізацію направляючої решітки третього ступеня потужної парової турбіни з постійним по висоті профілем при побудові його різними типами кривих. Аналіз результатів оптимізації показав, що найбільше зниження інтегральних втрат склало 7% у відносних величинах. Подальша оптимізація периферійного меридіонального обводу за допомогою розробленого методу дозволила збільшити цю величину на 1,4%. Використання лопатки перемінного по висоті профілю при постановці оптимізаційної задачі також дозволяє знизити інтегральні втрати.
  • Документ
    Комбинированный метод аэродинамической оптимизации ступени осевой турбины
    (НТУ "ХПИ", 2016) Максюта, Дмитрий Игоревич
    Диссертация на соискание ученой степени кандидата технических наук по специальности 05.05.16 – турбомашины и турбоустановки. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2016. Диссертация посвящена разработке комбинированного метода аэродинамической оптимизации ступени осевой турбины, который основываясь на поочередном решении одномерной и трехмерной задач, позволяет значительно повысить эффективность всей ступени при этом учитывая как характер течения рабочего тела в решетках, так и влияние на него протечек. На основании современной тенденций к использованию методов вычислительной аэродинамики (CFD) при оптимизации проточных частей осевых турбин и при этом задействуя как можно большее количество управляющих параметров в оптимизационном процессе, предложен комбинированный метод оптимизации. Предложенный метод использует одномерную и трехмерную оптимизацию, что позволяет существенно повышать аэродинамическую эффективность ступеней, при этом значительно экономя время, необходимое для проведения расчетов. С помощью предложенного метода оптимизации и методики расчета протечек в осерадиальном уплотнении выполнена оптимизация 3-й ступени ЦВД турбины К-540-23,5. Результаты проведенных расчетов показали, что повышение эффективности ступени на этапе одномерной оптимизации происходит за счет выбора на среднем радиусе оптимальных α1, β2, значений степени реактивности ρ и относительного шага решетки t/b. Повышение эффективности ступени на этапе трехмерной оптимизации происходит за счет: выбора оптимального значения входного геометрического угла β1г рабочего профиля, обеспечившего улучшение обтекания профиля; устранения локальных диффузорных участков в межлопаточном канале; нахождения оптимальных законов закрутки, обеспечивающих равномерное натекание потока по всей высоте рабочих лопаток. Суммарно абсолютный КПД новой ступени увеличился более чем на 1 %.
  • Документ
    Комбінований метод аеродинамічної оптимізації ступеня осьової турбіни
    (НТУ "ХПІ", 2016) Максюта, Дмитро Ігорович
    Дисертація присвячена розробці комбінованого методу аеродінамічної оптимізації ступеня осьової турбіни, який ґрунтуючись на почерговому вирішенні одновимірної та тривимірної задач, дозволяє значно підвищити ефективність всього ступеня враховуючи як характер течії робочого тіла в решітках, так і вплив на неї витоки. На підставі сучасної тенденцій до використання методів чисельної аеродинаміки (CFD) при оптимізації проточних частин осьових турбін і при цьому задіяючи якомога більшу кількість управляючих параметрів в оптимізаційному процесі, запропонований комбінований метод оптимізації. Запропонований метод використовує одновимірну та тривимірну оптимізації, що дозволяє істотно підвищувати аеродинамічну ефективність ступенів, при цьому значно заощаджуючи час, необхідний для проведення розрахунків. При розробці методу оптимізації достовірність застосування методів CFD підтверджена шляхом триетапного порівняння результатів розрахунків з результатами експериментальних досліджень. Для отримання більш точних даних кількості витоки робочого тіла в радіальний зазор при проведенні етапу одновимірної оптимізації, розроблена методика для визначення коефіцієнта витрати вісерадіального ущільнення в залежності від його геометричних і режимних характеристик, а також з урахуванням зсуву ротора відносно статора від теплового розширення. Дана методика розроблялася шляхом проведення серії CFD розрахунків. Додатково проведено CFD дослідження для порівняння вісерадіальних ущільнень з прямоточними та виявлення нових ефективних конструкцій ущільнень, яке показало, що шляхом створення штучної шорсткості на валу прямоточного ущільнення можна зменшити витрату через нього на 45 % в порівнянні з вісерадіальними ущільненнями. За допомогою запропонованого методу оптимізації та методики розрахунку витоки в вісерадіальному ущільненні виконана оптимізація 3-го ступеня ЦВТ турбіни К-540-23,5. Результати проведених розрахунків показали, що абсолютний ККД нового ступеня збільшився більш ніж на 1 %.
  • Документ
    Объектно-ориентированная комплексная оптимизация проточной части мощной паровой турбины
    (НТУ "ХПИ", 2015) Авдеева, Елена Петровна
    Диссертация на соискание ученой степени кандидата технических наук по специальности 05.05.16 – турбомашины и турбоустановки. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2015. Диссертация посвящена разработке методологии объектно-ориентированной комплексной оптимизации проточной части мощных паровых турбин, которая основана на совместном расчете термогазодинамических процессов в элементах проточной части паровой турбины. На основании современной тенденции постоянного роста спроса общества на электроэнергию становится актуальным проектирование новых и модернизация существующих паровых турбин. Разработана методология объектно-ориентированной комплексной оптимизации проточной части мощных паровых турбин. При реализации этой методологии была усовершенствована математическая модель термогазодинамических процессов моделирования совместной работы системы соплового парораспределения, уравнительной камеры и многоцилиндровой проточной части турбоагрегата, разработаны методики определения: потерь давления в камере за регулирующей степенью с учетом режимных и конструктивных параметров; коэффициента потерь и угла выхода потока рабочего тела с решетки от величины подрезки выходной кромки, а также оценено влияние изменения межвенцового зазора и схемы подачи рабочего тела к сегментам направляющего аппарата на эффективность регулирующей ступени и включено в единое интегрированное информационное пространство САПР "Турбоагрегат". С помощью предложенной методологии выполнена оптимизация проточной части турбины К-310-240 с помощью двух подходов. Первый подход – оптимизация турбины с раздельным определением оптимальных геометрических параметров её объектов, а второй подход – комплексная оптимизация всей турбины. Результаты проведенных расчетов, показали эффективность второго подхода при оптимизации проточной части мощной паровой турбины по сравнению с первым. Использование предложенной методологии позволило увеличить мощность турбины К-310-240 на 6,179 МВт, а абсолютный КПД цикла – на 0,83%.
  • Документ
    Об'єктно-орієнтована комплексна оптимізація проточної частини потужних парових турбін
    (НТУ "ХПІ", 2015) Авдєєва, Олена Петрівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.16 – турбомашини та турбоустановки. – Національний тех-нічний університет "Харківський політехнічний інститут", Харків, 2015. Дисертація присвячена розробці методології об'єктно-орієнтованої комплексної оптимізації проточної частини потужних парових турбін, яка основана на спільному розрахунку термогазодинамічних процесів в елементах проточної частини парової турбіни. У зв'язку з постійним зростанням попиту суспільства на електроенергію стає актуальним проектування нових та модернізація існуючих парових турбін. Для підвищення їх ефективності розроблена методологія об'єктно-орієнтованої комплексної оптимізації проточної частини потужних парових турбін. При реалізації цієї методології було вдосконалено математичну модель термогазодинамічних процесів моделювання спільної роботи системи соплового паророзподілу, вирівнюючої камери та багатоциліндрової проточної частини турбоагрегату, розроблені методики визначення: втрат тиску в камері за регулюючим ступенем з урахуванням режимних і конструктивних параметрів; коефіцієнта втрат і кута виходу потоку робочого тіла з решітки від величини підрізки вихідної кромки, а також оцінено вплив зміни міжвінцевого зазору і схеми подачі робочого тіла до сегментів направляючого апарату на ефективність регулюючого ступеня та включено до єдиного інтегрованого інформаційного простору САПР "Турбоагрегат". За допомогою запропонованої методології виконана оптимізація турбіни К-310-240, її потужність збільшена на 6,18 МВт, а абсолютний ККД циклу – на 0,83%.
  • Документ
    Обратная аэродинамическая задача для оптимального проектирования кольцевых диффузорных каналов турбомашин
    (НТУ "ХПИ", 2015) Темченко, Сергей Александрович
    Диссертация на соискание ученой степени кандидата технических наук по специальности 05.05.16 – турбомашины и турбоустановки. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2015. Диссертация посвящена разработке метода решения прямой и обратной задач для кольцевых диффузорных каналов при условии осевой симметрии течения. Метод предназначен для использования при оптимальном проектировании переходных и выходных диффузорных каналов турбомашин. В разработанном методе прямая и обратная задачи разделены на задаваемое число отдельных подзадач, независимых друг от друга, которые можно решать в любой последовательности или одновременно, что обеспечивает возможность контроля формы любого участка проектируемого канала и позволяет значительно сократить время проектирования. Отдельные подзадачи решаются методами нелинейного программирования, что не требует хранения существенных объемов информации. Разработаны методика оптимального проектирования кольцевых диффузоров на основе обратной задачи и комплекс компьютерных программ для решения прямой и обратной аэродинамических задач и задач оптимизации. С помощью решения прямых задач определены распределения параметров потока по радиусу в межвенцовых и межступенчатых зазорах осевой турбины, что открывает перспективы оптимального проектирования многоступенчатых отсеков турбин по зазорам совместно с переходными или выходными кольцевыми диффузорными устройствами. Используя методику оптимального проектирования кольцевых диффузоров, спроектирован высокоэффективный безотрывной диффузор при заданных степени расширения, осевом и радиальном габаритах. Диффузор мало чувствительный к изменению режимных параметров в диапазонах, характерных для выходных диффузоров компрессоров и энергетических газовых турбин, имеет низкий уровень коэффициента полных потерь и осевой габарит, который меньше на 20% предельного осевого габарита предотрывного диффузора с прямолинейными обводами и такой же степенью расширения.
  • Документ
    Метод расчетно-теоретического исследования структуры течения и характеристик ступеней центробежных нагнетателей
    (Национальный аэрокосмический университет им. Н. Е. Жуковского "Харьковский авиационный институт", 2015) Фесенко, Ксения Владимировна
    Диссертация на соискание ученой степени кандидата технических наук по специальности 05.05.16 – турбомашины и турбоустановки. – Национальный технический университет "Харьковский политехнический институт", Харьков, 2015 г. В диссертации разработан метод расчетно-теоретического исследования структуры течения и характеристик ступеней центробежных нагнетателей с радиальными лопатками рабочих колес, который позволяет определять в широком диапазоне режимов работы суммарные характеристики и структуру осредненного в окружном направлении сжимаемого дозвукового течения в проточной части, включая межлопаточные каналы. Для учета вязких эффектов использованы обобщенные полуэмпирические зависимости, используемые при анализе течения в центробежных нагнетателях. Данный метод расчета позволяет учитывать геометрические особенности радиальных рабочих колес с лопатками, образованными цилиндрическими и коническими поверхностями, безлопаточных и лопаточных диффузоров, обратных направляющих аппаратов. На основе предложенного метода разработан программный комплекс AxCB, который позволяет проводить численный анализ двумерного дозвукового течения в ступенях центробежных нагнетателей, определять поля газотермодинамичних параметров потока газа и суммарные характеристики ступеней, а также их отдельных элементов. Верификация разработанного метода расчета показала удовлетворительную точность согласования результатов численных исследований течений в криволинейных каналах, рабочих колесах, отдельных элементах и ступенях в целом с данными экспериментальных исследований, а также с аналитическим решением. С помощью предложенного метода и ПК AxCB проведено исследование влияния различных геометрических параметров проточной части и лопаточных венцов на структуру течения и суммарные характеристики ступеней ЦБН, а именно формы средней линии и величины геометрического угла выхода лопатки РК, формы меридиональных обводов проточной части и величины геометрического угла лопатки на входе в ЛД, а также различных вариантов исполнения диффузора ступени. На основании выполненного детального анализа предложено усовершенствование геометрических параметров трех ступеней ЦБН с целью повышения их основных параметров. Ступень "А" усовершенствована путем изменения формы средней линии, а также величины конструктивного угла лопатки на выходе из РК, что привело к увеличению коэффициента политропического напора и расширении рабочей зоны характеристики нагнетателя. Модернизация ступени "Б" заключалась в коррекции формы меридиональных обводов проточной части и величины конструктивного угла лопатки на входе в ЛД, что привело к улучшению согласования работы РК и ЛД. После проведения расчетов ряда вариантов проточной части ступени "В", отличающихся используемым диффузором и шириной проточной части, были даны рекомендации по совершенствованию суммарных характеристик ступени, что при-вело к увеличению коэффициента политропического напора и КПД.
  • Документ
    Метод розрахунково-теоретичного дослідження структури течії та характеристик ступенів відцентрових нагнітачів
    (НТУ "ХПІ", 2015) Фесенко, Ксенія Володимирівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук за фахом 05.05.16 – турбомашини та турбоустановки. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2015 р. В дисертації розроблено метод розрахунково-теоретичного дослідження структури течії та характеристик ступенів відцентрових нагнітачів з радіальними лопатками робочих коліс, який дозволяє визначати в широкому діапазоні режимів роботи сумарні характеристики та структуру осередненої у коловому напрямку стисливої дозвукової течії в проточній частині, включаючи міжлопаткові канали. Для врахування в'язких ефектів використані узагальнені напівемпіричні залежності, що використовуються для розрахунку відцентрових нагнітачів. Запропонований метод дозволяє врахувати геометричні особливості радіальних робочих коліс з лопатками, що образовані циліндричними або конічними поверхнями, лопаткових і безлопаткових дифузорів, зворотних направляючих апаратів та криволінійних обводів проточних частин, а також оцінювати узгодженість їх сумісної роботи. За допомогою розробленого програмного комплексу AxCB проведено верифікацію методу розрахунку, яка показала задовільну точність зіставлення результатів числових досліджень течій в ступенях ВЦН з даними експериментальних досліджень та з аналітичним рішенням. Проведено дослідження впливу геометричних параметрів проточної частини і лопаткових вінців на структуру течії і сумарні характеристики ступенів ВЦН. На підставі виконаного детального аналізу запропоновано удосконалення геометричних параметрів трьох ступенів ВЦН з метою підвищення їх напору, ККД або розширення робочої зони характеристики.
  • Документ
    Обернена аеродинамічна задача для оптимального проектування кільцевих дифузорних каналів турбомашин
    (НТУ "ХПІ", 2015) Темченко, Сергій Олександрович
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.05.16 – турбомашини та турбоустановки. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2015. Дисертація присвячена розробці перспективного методу розв'язання прямої та оберненої аеродинамічних задач для кільцевих перехідних та вихідних каналів турбомашин, який враховує особливості організації обчислювальних процесів при оптимальному проектуванні таких каналів. Пряму та обернену задачі розділено на окремі підзадачі, незалежні одна від одної, які можна розв'язувати в будь-який послідовності або одночасно. Це забезпечує можливість контролю форми будь-якої ділянки каналу, що проектується, і дозволяє значно скоротити час проектування. Окремі підзадачі розв'язуються методами нелінійного програмування, що не вимагає збереження істотних обсягів інформації. На основі оберненої задачі розроблено методику оптимального проектування дифузорів. Спроектовано дифузор з криволінійними обводами із заданими ступенем розширення, осьовим та радіальним габаритами. Він має безвідривний характер течії, низький рівень втрат та малу чутливість до зміни режимних параметрів у діапазонах, характерних для вихідних дифузорів компресорів і енергетичних газових турбін, а його осьовий габарит на 20% менший величини граничного осьового габариту передвідривного дифузора з прямолінійними обводами та таким же ступенем розширення.