05.17.03 "Технічна електрохімія"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/17095
Переглянути
Документ Осадження наноструктурованих металів (Ag, Au, Pd) на кремній електролізом і гальванічним заміщенням з розчинів DMSO та DMF(Національний технічний університет "Харківський політехнічний інститут", 2020) Шепіда, Мар'яна ВолодимирівнаДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.03 – технічна електрохімія. – Національний технічний університет “Харківський політехнічний інститут”, Міністерство освіти і науки України, Харків, 2019. У роботі розвинуто науковий напрям керованого електрохімічного осадження наноструктурованих осадів металів (Ag, Au, Pd) на поверхню кремнію електролізом та методом гальванічного заміщення у середовищі органічних апротонних розчинників. Встановлено, що поєднання імпульсного режиму електролізу та неводного середовища сприяє формуванню наночастинок металів. Досліджено вплив концентрації іонів відновлювальних металів на геометрію наночастинок та їх розподіл по поверхні підкладки. Вивчено залежність розмірів наночастинок металів від тривалості процесу гальванічного заміщення. Вияснено закономірності впливу температури процесу, типу поверхні кремнію, природи органічних розчинників на формування наноструктурованих осадів металів (Ag, Au, Pd) та їх морфологію. Комплекс отриманих експериментальних даних дозволив модифікувати поверхню кремнію наночастинками металів для одержання наноструктур кремнію та плазмонно-активних поверхонь на їх основі. Реалізований у роботі методи імпульсного електролізу дозволяє одержати фіксовані на поверхні підкладки наноструктуровані осади металів заданої форми та розмірів для виготовлення високочутливих сенсорів з подальшим перетворенням сонячного світла в електричну енергію.Документ Осадження наноструктурованих металів (Ag, Au, Pd) на кремній електролізом і гальванічним заміщенням з розчинів DMSO та DMF(Національний технічний університет "Харківський політехнічний інститут", 2019) Шепіда, Мар'яна ВолодимирівнаДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.03 – технічна електрохімія. – Національний технічний університет "Харківський політехнічний інститут", Міністерство освіти і науки України, Харків, 2019. У роботі розвинуто науковий напрям керованого електрохімічного осадження наноструктурованих осадів металів (Ag, Au, Pd) на поверхню кремнію електролізом та методом гальванічного заміщення у середовищі органічних апротонних розчинників. Встановлено, що поєднання імпульсного режиму електролізу та неводного середовища сприяє формуванню наночастинок металів. Досліджено вплив концентрації іонів відновлювальних металів на геометрію наночастинок та їх розподіл по поверхні підкладки. Вивчено залежність розмірів наночастинок металів від тривалості процесу гальванічного заміщення. Вияснено закономірності впливу температури процесу, типу поверхні кремнію, природи органічних розчинників на формування наноструктурованих осадів металів (Ag, Au, Pd) та їх морфологію. Обґрунтовано доцільність осадження наночастинок металів (Ag, Au, Pd) на поверхні кремнію, що базується на високому значенні їх стандартних електродних потенціалів й ефективності систем Si/МNPs у формуванні функціональних наноструктур і плазмонно-активних поверхонь. Експериментально встановлено такі раціональні умови електроосадження наноструктурованих металів (Ag, Au, Pd): склад електроліту, параметри імпульсного електролізу (значення катодного потенціалу, тривалість імпульсу та паузи) та тривалість процесу (кількість циклів). За Е = -1,6...-2,2 В з розчинів (0,002…0,008)М H[AuCl₄] + 0,05М Bu₄NClO₄ у DMSO; (0,001…0,006)М Pd(NO₃)₂ + 0.05M Bu₄NClO₄ у DMSO та PC; (0,025…0,1)М (NH₄)[Ag(CN)₂] у DMF, τім.:τп. = 6:300 мс, 25…800 циклів, за температури 25 °С срібло, золото та паладій осаджуються на поверхню кремнію з утворенням наночастинок та їх агломератів. Досліджено залежність геометрії наночастинок металів (Ag, Au, Pd) і морфології осадів від умов електроосадження (значення катодного потенціалу, концентрації іонів металів і тривалості процесу). Встановлено, що зі збільшенням значень цих величин спостерігається тенденція до формування осадів від дискретних частинок (від 30 нм до 70 нм) до агломератів (від 120 нм до 200 нм) і нанопоруватих плівок. Запропоновано умови контрольованого осадження наночастинок металів на кремнієву поверхню за їх геометрією. Показано, що у межах катодних потенціалів -0,2…-2,5 В із розчинів відновлювальних іонів широкого діапазону концентрацій срібло, золото та паладій осаджуються на поверхню кремнію у вигляді дискретних наночастинок, які рівномірно розподілені по поверхні підкладки. Отже, зважаючи на природу напівпровідникової підкладки, 3D ріст відновлюваного металу відбувається за механізмом Вольмера-Вебера. Показано, що у неводних розчинах сольватованих і комплексних іонів в широкому діапазоні концентрацій і температур на поверхні кремнію відбуваються процеси нанорозмірного гальванічного заміщення. Формування осаду здійснюється за механізмом Вольмера-Вебера з утворенням дискретних (острівкових) наночастинок на напівпровідниковій підкладці аналогічно до їх осадження електролізом. Високодонорні молекули органічного апротонного розчинника (L) за рахунок донорно-акцепторної взаємодії L:→M утворюють поверхневі комплекси з фіксованими MNPs. Останні зазнають своєрідного "блокування", ускладнюючи їх ріст. Це сприяє формуванню сфероподібних MNPs за рахунок "згладжуючого" ефекту. Встановлено, що природа іона металу, його концентрація, температура та тривалість процесу гальванічного заміщення є основними факторами впливу на розміри осаджених наночастинок і параметрами керованого формування наноструктур Si/МNPs. Нанорозмірне гальванічне заміщення срібла, паладію та золота у середовищі органічних апротонних розчинників забезпечує формування на кремнієвій поверхні наноструктурованих осадів металів без перебігу побічних процесів. Це дає змогу отримувати системи Si/МNPs з розмірами наночастинок до 100 нм з відносно невеликим діапазоном їх розмірів. Запропоновано принципову технологічну схему осадження наночастинок металів (Ag, Au, Pd) на кремній гальванічним заміщенням у середовищі органічних апротонних розчинників, що дало змогу одержати наноматеріали кремній/нанометал з функціональними властивостями. Наведено результати дослідженнь, використання електрохімічно осаджених наночастинок металів (Ag, Au, Pd) на поверхню кремнію для створення плазмонно-активних поверхонь і наноструктур кремнію. Встановлено залежність морфології останніх від геометрії нанесених наночастинок, як активаторів метал-активного хімічного травлення. Показано, що природа металу є головним фактором формування наноструктур кремнію – поруватої поверхні чи кремнієвих нанодротів (SiNWs). Тенденція до утворення останніх проявляється в міру збільшення значення стандартного електродного потенціалу металу. Тому, в результаті МАХТ системи Si/Au з наночастинками найбільш електрододатного металу ( 0 / 3 Au Au E = 1,49 В) характерно утворення SiNWs, тоді як для системи Si/Ag ( 0 Ag / Ag E = 0,78 В) – нанопоруватого кремнію. Це пояснюється електрохімічним механізмом травлення кремнію в контакті з фіксованими на його поверхні наночастинками металу. Швидкість процесів, що спричиняють травлення кремнію тим більша, чим більша різниця потенціалів між катодними та анодними ділянками. В такому ж напрямі локалізується травлення, що є однією з умов формування нанодротів і нанопор з великим відношенням довжина/діаметр. Встановлено, що на морфологію утворених під час метал активованого травлення наноструктур кремнію суттєво впливають розміри осаджених MNPs. Зокрема, форма пори, переважно, відтворює форму наночастинки металу- активатора. Так, нанопори, одержані МАХТ поверхні Si/AgNPs і Si/PdNPs за діаметром близькі до діаметру осаджених відповідно AgNPs і PdNPs та рівномірно розподілені по поверхні підкладки. Вияснено, що наночастинки паладію та золота є ефективними для одержання масивів нанодротів кремнію методом МАХТ. При тому SiNWs вертикально напрямлені до площини підкладки та характеризуються надвеликим відношенням довжини до діаметра. Таке зумовлено острівковою природою осадів PdNPs і AuNPs та рівномірним їх розподілом на поверхні підкладки. Нанорозмірний ефект металевих наночастинок на процес МАХТ проявляється у формуванні структур кремнію. Встановлено, що наночастинки паладію з розмірами менше ніж 50 нм сприяють утворенню цілісних нанодротів кремнію, а більші ніж 50 нм, що переважно є агломератами – наноструктур неправильної форми. Водночас AuNPs широкого діапазону розмірів золота й осади з різною морфологією сприяють утворенню нанодротів кремнію, які зберігають вертикальну орієнтацію відносно площини підкладки. Отже, високі значення ΔЕ0 систем Si/МNPs, дають змогу отримувати методом МАХТ нанопоруватий кремній (із Si/AgNPs, Si/PdNPs) і масив нанодротів (із Si/PdNPs, Si/AuNPs). Ширші можливості наночастинок паладію та золота порівняно з наночастинками срібла у формуванні наноструктур кремнію можна пояснити природою металу та нанорозмірним ефектом. Встановлено, що одержані на поверхні кремнію дендритні наночастинки золота підсилюють раманівський сигнал. Результати МАХТ і лабораторного випробування показали, що нанопоруваті структури кремнію, одержані на поверхні кремнію з осадженими наночастинками срібла та паладію, можна використовувати як чутливі елементи газових сенсорів (CO, NH3, CO2 та ін.); нанодроти, одержані на поверхні кремнію з осадженими наночастинками золота та паладію – як датчики у фотоелектроніці та як аноди літій-іонних акумуляторів; підкладки кремнію з дендритними наночастинки золота на поверхні – як маркери та сенсори у біомедицині. Комплекс отриманих експериментальних даних дав змогу модифікувати поверхню кремнію наночастинками металів для одержання наноструктур кремнію та плазмонно-активних поверхонь на їх основі. Реалізовані в роботі методи імпульсного електролізу дають можливість одержати фіксовані на поверхні підкладки наноструктуровані осади металів заданої форми та розмірів для виготовлення високочутливих сенсорів та сонячних елементів. Встановлено, що системи Si/PdNPs, Si/AuNPs ефективніші у формуванні кремнієвих наноструктур порівняно з системою Si/AgNPs. Це зумовлено відмінністю металів за значеннями стандартних електродних потенціалів. Результати науково-дослідних випробувань у “Науково-дослідному центрі комітету судових експертиз Республіки Білорусь” показали ефективність одержаних матеріалів для високочутливих сенсорів. Впроваджено результати роботи у навчальний процес кафедри хімії і технології неорганічних речовин НУ "Львівська політехніка" для підготовки студентів за спеціальністю 161 "Хімічні технології та інженерія" спеціалізація "Технічна електрохімія" в теоретичних та лабораторних заняттях з дисципліни "Електрохімія наноматеріалів".