2022 № 3 Сучасні інформаційні системи

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65929

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Векторний метод пошуку послідовностей у великих даних
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Хаханова, Ганна Володимирівна
    Пропонується технологічне програмне рішення для метричного пошуку та ідентифікації логіко-часових патернів бізнес-потоку даних за рахунок створення додаткових векторних структур даних та паралельного методу їх обробки. Предметом досліджень є методи пошуку та ідентифікації логіко-часових патернів у великих даних. Метою є підвищення ефективності пошуку та розпізнавання логіко-часових патернів, що семантично утворюють бізнес-функціональності у 8-годинному часовому фреймі скріншотів зі "сміттєвими" даними. Застосовувані методи: апарат теорії множин та булевої алгебри, метричні матричні моделі визначення параметрів для множин двійкових векторів, елементи теорії ймовірностей, теорія алгоритмів, програмне моделювання, аналіз великих даних. Отримані результати: метод пошуку та розпізнавання патернів на основі векторного завдання символьних послідовностей, які ідентифікують патерни у потоках великих даних, що використовує унітарне кодування інформаційних примітивів та даних; векторні моделі – структури унітарно-кодованих даних для опису потоку великих даних, як декартові добутки множини примітивів-string-маркерів та дискретної послідовності-реалізації заданого часового фрейма. Практична значущість роботи полягає у реалізації векторного методу, що дозволило створити програму розпізнавання патернів у потоці великих даних з ймовірністю 0,77%.