2023 № 11 Енергозбереження. Енергетика. Енергоаудит
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/77318
Переглянути
Документ Модель прогнозування обсягу енергетичного ринку за недетермінованих умов(Національний технічний університет "Харківський політехнічний інститут", 2023) Кирій, Валентина Василівна; Краснощок, Вадим ІвановичЕнергетичний ринок за своєю сутністю є доволі чутливим до кризових явищ, особливо тих, що безпосередньо стосуються населення. Зокрема це твердження пов’язане з компаніями, які займаються постачанням електроенергії фізичним особам і малому чи середньому бізнесу. Поточні наслідки пандемії та загострення військових протистоянь по всьому світу дають зрозуміти, що наразі відбуваються суттєві трансформаційні процеси, як суто технічні, так і економічні. Наприклад, для України це потреба перебудовувати зовнішньоекономічні зв’язки, захищатися від руйнування інфраструктури та враховувати спроможність клієнтів вчасно здійснювати оплату послуг. Аби бізнес, який бере участь у визначених процесах, міг швидко реагувати на виклики сьогодення, в рамках цієї статті було розроблено модель прогнозування обсягу ринку за недетермінованих умов, взявши за основу алгоритми векторної авторегресії та нейронні мережі. В окреслених обставинах найбільш вагомим компонентом запропонованих підходів є стадія передобробки даних, що дозволяє врахувати зовнішній вплив, який характеризує як соціальні зсуви, так і загальні зміни в галузі. Використовуються такі методи: аналітичний та індуктивний – для формування факторів зовнішнього впливу та опису цільових компаній; експертне оцінювання – для визначення найбільш впливових зовнішніх показників; експериментальний, багатокритеріального оцінювання та статистичні методи оброблення часових рядів – для визначення найбільш ефективної авторегресійної моделі. У ході дослідження виявлено, що цей вплив можна розділити на дві складові – профілі поведінки цільової аудиторії та ринкової кон’юнктури. Перший показник включає в себе перетворений текстовий опис клієнтів і середній обсяг витрат на енергетику, а другий – стан світової економіки, рівень монополізації і інвестиційних вкладень, фінансову стабільність компанії та рівень цін на енергоресурси. Окрім вказаного, кожен з профілів містить коригування відносно соціального зсуву. Проведене експериментальне дослідження показало відносну ефективність запропонованого підходу до передобробки даних у поєднанні, як зі згортковими нейронними мережами, так і з векторною авторегресією рухомого середнього. Це дозволяє констатувати доцільність його використання на практиці з можливістю подальшого вдосконалення із застосуванням більш складних сімейств алгоритмів.