05.02.08 "Технологія машинобудування"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/20278
Переглянути
Документ Підвищення ефективності виготовлення елементів торцевих імпульсних ущільнень турбомашин нанесенням функціональних покриттів(Національний технічний університет "Харківський політехнічний інститут", 2019) Жуков, Олексій МиколайовичДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.02.08 – технологія машинобудування. – Національний технічний університет «Харківський політехнічний інститут», Харків, 2019. Дисертація присвячена вирішенню науково-технічної задачі забезпечення працездатності торцевих імпульсних ущільнень (ТІУ) турбомашин шляхом удосконалення технології виготовлення кілець із композиційних матеріалів, що поєднують у собі механічну міцність основи та захисні властивості покриттів. Проведено аналіз технології виготовлення й особливостей експлуатації ТІУ, з метою пошуку технологічних методів, які дозволяють створювати на підкладках зі сталей і сплавів функціональні покриття із заданими експлуатаційними властивостями. Розроблено методику спрямованого вибору технології забезпечення необхідної якості робочих поверхонь кілець ТІУ залежно від умов роботи ущільнення й властивостей навколишнього середовища. Удосконалено технологію виготовлення елементів ТІУ, які працюють в агресивних середовищах і виготовляються зі сталевих, нікелевих та бронзових сплавів, за рахунок застосування енергоефективних та екологічно чистих методів, альтернативних хіміко-термічній обробці. Розроблено новий метод збільшення товщини шару підвищеної твердості шляхом формування на попередньо зміцнених методом цементації електроерозійним легуванням торцевих поверхнях кілець ТІУ комбінованих електроерозійних покриттів. Проведено трибологічні дослідження та дослідження параметрів якості поверхневих шарів, сформованих методом іонного азотування, конденсованого іонного бомбардування та карбонітрацією. Розроблено метод зниження фретинг-корозії для контактуючих поверхонь ущільнювальних елементів ТІУ. Розроблено технологічні рекомендації виготовлення ТІУ залежно від умов роботи та перекачуваного середовища. Економічний ефект від впровадження основних положень роботи у виробництво становить 450 тис. грн.Документ Підвищення ефективності виготовлення елементів торцевих імпульсних ущільнень турбомашин нанесенням функціональних покриттів(Національний технічний університет "Харківський політехнічний інститут", 2019) Жуков, Олексій МиколайовичДисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.02.08 – технологія машинобудування. Об’єкт дослідження – технологічний процес формування функціональних покриттів на поверхні елементів торцевих імпульсних ущільнень турбомашин. Предмет дослідження – закономірності технологічного процесу формоутворення поверхні із заданими експлуатаційними властивостями, що забезпечують необхідну якість (довговічність, зносостійкість, працездатність) торцевих імпульсних ущільнень турбомашин. Метою дослідження є забезпечення працездатності торцевих імпульсних ущільнень (ТІУ) турбомашин шляхом виготовлення кілець із композиційних матеріалів, що поєднують у собі механічну міцність основи й захисні властивості покриттів, підвищують зносостійкість торцевих поверхонь кілець, герметичність і захист елементів вторинного ущільнення від фретинг-корозії. Для досягнення поставленої мети були сформульовані наступні задачі: − Провести аналіз технології виготовлення й особливостей експлуатації ТІУ. − Розробити методику спрямованого вибору технології забезпечення необхідної якості робочих поверхонь кілець ТІУ залежно від умов роботи ущільнення й властивостей навколишнього середовища. − Удосконалити метод електроерозійного легування (ЕЕЛ) для здійснення процесів сульфідування й сульфоцементації енергоефективними й екологічно чистими методами, альтернативними хіміко-термічній обробці. − Розробити новий метод збільшення товщини шару підвищеної твердості шляхом формування на попередньо зміцнених цементацією методом ЕЕЛ торцевих поверхнях кілець ТІУ комбінованих електроерозійних покриттів; − Провести дослідження якісних параметрів поверхневих шарів, сформованих методом іонного азотування, конденсованого іонного бомбардування та карбонітрацією. − Розробити метод зниження фретинг-процесу для контактуючих поверхонь ущільнювальних елементів ТІУ. − Розробити технологічні рекомендації виготовлення ТІУ залежно від умов роботи та перекачуваного середовища. − Упровадити результати досліджень у практику виготовлення ТІУ турбомашин. У вступі обґрунтований вибір теми дисертації та наукових завдань, сформульовані мета й завдання дослідження, визначені наукова новизна й практичне значення одержаних результатів, а також наведена інформація про апробацію, структуру та обсяг роботи. У першому розділі виконано аналіз проблем підвищення якості елементів ТІУ. Наведено загальні відомості про торцеві ущільнення, розглянуті їх конструктивні особливості, галузі застосування, матеріали і види руйнувань. Досліджено технологічні методи підвищення якості робочих поверхонь ТІУ. Все це дозволило сформулювати мету й завдання дисертації. У другому розділі на основі теоретичного розгляду вимог до якості функціональних покриттів робочих поверхонь деталей роторних машин були розроблені система й критерії спрямованого вибору технології забезпечення необхідної якості робочих поверхонь кілець ТІУ шляхом аналізу і синтезу існуючих аналогів, досвіду промисловості та рекомендацій у вітчизняній і зарубіжній літературі. Система спрямованого вибору технології забезпечення необхідної якості робочих поверхонь кілець ТІУ охоплює весь їх життєвий цикл, що включає матеріал кілець та їх елементів, технологію їх виготовлення, технологію ремонту та ін. Всі вони розглядаються через спеціальні методи спрямованого вибору. До того ж враховується вплив обраних методів один на одного, який у кінцевому підсумку буде позначатися на якості виробу. Варіанти реалізації технологій, що задовольняють рішення були подані орієнтованим графом, вузлами якого є етапи розв’язання задачі, а ребрами – трудомісткість їх розв’язання (технологічна собівартість). Результат пошуку зводиться до розв’язання задачі цілочислового програмування комбінаторного виду, в якій розв’язок шукають на кінцевій множині можливих значень змінних. Як метод оптимізації використовували комбінаторний метод «гілок і меж». Результатом спрямованого вибору технології, що забезпечує необхідні експлуатаційні властивості робочих поверхонь торцевих імпульсних ущільнень, обирався мінімізований за критерієм собівартості технологічний процес формування функціональних покриттів. Третій розділ присвячений методиці експериментальних досліджень впливу різних технологій на якість поверхонь елементів ТІУ. Були розглянуті особливості технології електроерозійного легування (ЕЕЛ) при обробці поверхонь елементів ТІУ. Подано результати досліджень процесу обробки торцевих поверхонь ТІУ іонним азотуванням, конденсованим іонним бомбардуванням, карбонітрацією. Наведена методика досліджень трибологічних властивостей елементів ТІУ, виготовлених різними способами. Подано методику дослідження впливу способів виготовлення кілець ТІУ на механічні властивості. Наведені стендові випробування газового торцевого імпульсного ущільнення. У четвертому розділі наведені результати експериментальних досліджень підвищення якості робочих поверхонь елементів ТІУ сформованих різними методами. Розглянуті питання підвищення якості поверхні кілець ТІУ методом ЕЕЛ, іонного азотування, конденсованого іонного бомбардування, карбонітрації. Підвищення зносостійкості робочих поверхонь вуса та втулки. Подані результати досліджень нових технологій сульфідування та сульфоцементаціі реалізованих на базі методу ЕЕЛ. Наведений аналіз особливостей методів, що застосовуються для підвищення якості елементів ТІУ. У п’ятому розділі наведені результати дослідження впливу способів підвищення якості елементів ТІУ на механічні властивості. Подано результати порівняльних трибологічних випробувань поверхонь ковзання ТІУ, сформованих різними методами. Наведені результати впливу припрацювальних покриттів на трибологічні властивості поверхонь ковзання ТІУ, результати досліджень зносостійкості контактуючих поверхонь деталей пар тертя ТІУ. Розроблені технологічні рекомендації спрямованого вибору найкращого матеріалу кілець ТІУ і технологій підвищення їх якості. Згідно з розробленою методикою спрямованого вибору, виходячи з експлуатаційних властивостей функціональних покриттів і показників якості поверхні, таких як: шорсткість, мікротвердість, зносостійкість, мікроструктура поверхневого шару, які необхідно забезпечити, відбувається спрямований вибір технологічних методів, якими можна вирішити поставлену задачу. До того ж критерієм вибору є мінімальна технологічна собівартість реалізації інтегрованої технології в умовах конкретного підприємства. Практична корисність розробленої методики представлена технологічними рекомендаціями, наведеними у зведеній таблиці. Ця таблиця містить механічні й триботехнічні властивості функціонального покриття, а також інформацію про інтегровану технологію, що дозволяє забезпечити ці властивості. Здійснені натурні випробування імпульсного газового торцевого ущільнення для компресора вуглекислого газу. Відповідно до поставленої мети та задач у роботі отримані наступні результати: 1. Аналіз технології виготовлення й експлуатації ТІУ засвідчив, що резервом зниження собівартості й підвищення якості ТІУ можуть бути технологічні методи ЕЕЛ, ЦЕЕЛ, ІА, КІБ, КН та ін., що дозволяють створювати на підкладках зі сталей і сплавів композиційні матеріали, що поєднують захисні властивості покриттів із механічною міцністю основи. 2. На підставі теоретичних досліджень розроблена формалізована методика визначення раціонального варіанта технології виготовлення елементів ТІУ, яка відрізняється тим, що кожному варіанту відповідає план реалізації можливих комбінацій рішень, мінімізований за трудомісткістю виконання. Розроблено модель синтезу інтегрованої технології, що враховує умови експлуатації ТІУ, фізичні принципи роботи устаткування та дозволяє відповідно до технологічних обмежень формувати функціональні покриття на робочих поверхнях елементів ТІУ. Проведені дослідження були передумовами для створення системи спрямованого вибору технології виготовлення ТІУ турбомашин, що дозволяє формувати робочі поверхні кілець ТІУ, а також контактуючої поверхні вторинного ущільнення й захисної втулки із заданими експлуатаційними властивостями. 3. Набув подальшого розвитку метод ЕЕЛ для здійснення процесів сульфідування й сульфоцементації, застосовуваних для запобігання схоплюванню й зміцненню контактуючих поверхонь ТІУ. 4. Визначено, що для зміцнення сталевих кілець ТІУ методом ЕЕЛ найкращим є КЕП складу ВК8 + Cu + ВК8, нікелевих сплавів – ВК8 + ВК8 + Cu і ВК8 + ВК8 + Ni, а для берилієвої бронзи – хром. Водночас товщину зони підвищеної твердості можна збільшити за рахунок попередньої ЦЕЕЛ. 5. Установлено, що при зміцненні методом ІА, сталі 40Х і 38Х2МЮА товщина зміцненого шару досягає 250 і 500 мкм, а мікротвердість – 8 820 і 9 950 МПа відповідно. Найбільша товщина 250 мкм і мікротвердість зміцненого шару 11 190 МПа, при ІА сталі 40Х належать комбінованому способу зміцнення ІА + ЦЕЕЛ. При зміцненні зразків зі сталі 12Х18Н10Т і Р6М5 методом КІБ товщина покриттів становить ~ 2–3 мкм, мікротвердість основи відповідно для сталі Р6М5 і 12Х18Н10Т становить ~ 6,8 і ~ 2,5 ГПа, а покриття – ~ 18 і 14,5 ГПа. При зміцненні зразків зі сталі 38Х2МЮА методом КН формуються поверхневі шари товщиною до 0,5 мм і мікротвердістю ≥ 10 000 МПа. 6. Запропоновано новий спосіб зниження фретинг-корозії контактуючих поверхонь вторинного ущільнення, виготовлених зі сплаву ХН58МБЮД або БрБ2, за якого перед ЦЕЕЛ на одну поверхню сплаву ХН58МБЮД методом ЕЕЛ наносять покриття з міді або нікелю, а на іншу – з міді. Відповідно до іншого способу перед ЦЕЕЛ на одну з контактуючих поверхонь із бронзи БрБ2 наносять покриття з міді. 7. Розроблено технологічні рекомендації виготовлення ТІУ, адаптовані до умов їх роботи. Аналіз поданих даних дозволяє в першому наближенні вибрати найбільш кращий матеріал для їх виготовлення, а також метод підвищення якості їх елементів. Використання в парах тертя припрацьовувальних КЕП сприяє зниженню сили й коефіцієнта тертя. Дослідження показало, що кільця із застосованих матеріалів мають низький, середній і високий параметри PV і їх можна застосовувати в I, II і III категоріях ущільнень. 8. Результати дисертаційної роботи впроваджені на двох підприємствах та в навчальному процесі Наукова новизна одержаних результатів: 1. Вперше розроблена система спрямованого вибору технології виготовлення ТІУ турбомашин, що дозволяє формувати робочі поверхні кілець, а також контактуючі поверхні вторинного ущільнення та захисної втулки із заданими експлуатаційними властивостями. 2. Набула подальшого розвитку технологія ЕЕЛ елементів ТІУ, які працюють в агресивних середовищах і виготовляються зі сталевих, нікелевих та бронзових сплавів, що дозволило формувати торцеві поверхні кілець і контактуючі поверхні вторинного ущільнення з необхідними експлуатаційними характеристиками. 3. Доведена доцільність нанесення на робочі поверхні сталевих кілець і кілець із нікелевих сплавів ТІУ багатошарових комбінованих електроерозійних покриттів, сформованих відповідно послідовностями ВК8 + Сu + ВК8 і ВК8 + ВК8 + Сu та цементації методом ЕЕЛ, що збільшує товщину шару підвищеної твердості. 4. Обґрунтована доцільність застосування технології сульфідування та сульфоцементації, здійснюваних у практиці зміцнення сталевих поверхонь хіміко-термічнною обробкою, альтернативними, екологічно чистими та більш енергоефективними методами ЕЕЛ. 5. Дістав подальшого розвитку взаємозв’язок між технологічними методами формування покриттів, що забезпечують підвищення зносостійкості торцевих поверхонь кілець, та експлуатаційними характеристиками ТІУ. Практичне значення одержаних результатів полягає в розробці технологічних рекомендацій по виготовленню елементів ТІУ, адаптованих до умов роботи насосних та турбокомпресорних агрегатів та перекачуваного середовища. Аналіз поданих даних дозволяє в першому наближенні вибрати найбільш кращий матеріал для їх виготовлення, а також метод підвищення якості їх елементів.Документ Технологічне забезпечення експлуатаційних властивостей деталей машин із застосуванням комбінованих методів локального зміцнення поверхонь(Національний технічний університет "Харківський політехнічний інститут", 2020) Ідан, Алаа Фаділ ІданДисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.02.08 – технологія машинобудування (13 – механічна інженерія). – Національний технічний університет "Харківський політехнічний інститут", Харків, 2019. Дисертацію присвячено вирішенню науково-практичної задачі поверхневого локального зміцнення деталей для значного підвищення довговічності виробів в цілому. Метою дисертаційної роботи є дослідження і створення технологічного забезпечення експлуатаційних властивостей деталей машин із застосуванням комбінованих методів локального зміцнення. Як об'єкт дослідження було обрано технологічні процеси формування локальних зміцнених поверхневих шарів деталей машин з вуглецевих і легованих сталей. Предметом цього дослідження стали закономірності утворення зміцнених шарів, технології ефективної комбінованої лазерної та хіміко-термічної обробки. Для комплексного вирішення завдань у межах цієї роботи було використано системний підхід та раціональне поєднання теоретичних і експериментальних досліджень, узагальнення та аналізу відомих наукових результатів. Експериментальні дослідження реалізовані з використанням установки YAG-Лазер "DY044" виробництва фірми "ROFІN-SІNAR". Лазерне зміцнення проводилося на установці "Латус-31". Мікротвердість зразків визначали на приладі ПМТ-3. Адекватність розроблених моделей оцінювали зі застосуванням теорії похибок. Наукова новизна основних результатів дисертаційної роботи полягає в такому, що вперше отримані закономірності впливу швидкості переміщення лазерного променя на глибину зміцненого шару залежно від марки сталі при обробці тільки лазером і комбінованою технологією зміцнення; розроблено метод інтенсифікації процесу азотування, який відрізняється від існуючих попереднім лазерною обробкою поверхні; розроблено метод інтенсифікації процесу борування, який відрізняється від існуючих попереднім лазерною обробкою поверхні; розроблено математичні моделі та номограми впливу швидкості пересування лазерного променя і тривалості азотування на товщину зміцненого шару та поверхневу твердість. Практичне значення роботи полягає у вирішенні важливої наукової і технічної задачі у розробці технологій комбінованого зміцнення поверхневих шарів сталевих деталей, які полягають в попередній лазерній обробки і наступної хіміко-термічної обробки. У першому розділі проведено аналіз літературних джерел, що стосуються досліджуваної в дисертаційній роботі проблеми локального зміцнення поверхневих шарів сталі із застосуванням лазерної обробки. Проаналізовані лазерні обробки металів, комбіновані технології обробки деталей. Виконано аналіз відомих способів підвищення експлуатаційних властивостей машинобудівних деталей. Встановлено, що відомі комбіновані технології лазерної обробки і хіміко-термічної обробки мають ряд невирішених питань. Зокрема, вони не забезпечують достатню товщину зміцненого шару, є складними у використанні, трудомісткими, енергозатратними, тривалими процесами. Тому перспективним напрямком збільшення терміну служби деталей машин є створення інноваційної технології комбінованого зміцнення поверхневого шару сталі завдяки прискоренню процесу азотування і борування. У другому розділі виконано формування раціональної структури і властивостей сталі шляхом лазерного гартування. У третьому розділі розроблена комбінована технологія зміцнення поверхневого шару сталі. Досліджено вплив попередньої лазерної обробки та кінцевого азотування на товщину зміцненого шару і мікротвердість поверхневих шарів зразків сталі 38Х2МЮА. У четвертому розділі розроблені способи підвищення експлуатаційних властивостей машинобудівних деталей. На основі комплексу проведених теоретичних та експериментальних досліджень, сформульованих принципів, закономірностей і положень отримані наступні результати: 1. Інтенсифіковано процес азотування за рахунок попередньої лазерної обробки поверхні сталевих виробів і застосування дисперсного азотовмісного середовища для хіміко-термічної обробки, який підвищує поверхневу твердість після азотування до 1,15 раз і сприяє значному збільшенню зміцненого шару, а саме до 0,49 мм (сталь 40), до 055 мм (сталь 40Х) і до 0,65 мм (сталь 38Х2МЮА). 2. Отримані математичні моделі, що описують залежності товщини зміцненого шару та поверхневої твердості від зміни значень швидкості пересування лазерного променя і тривалості азотування сталі після комбінованої обробки дозволяють побудувати номограми для вибору раціональних режимів зміцнювальної обробки. 3. Інтенсифіковано процес борування за рахунок попередньої лазерної обробки поверхні сталевих виробів і застосування дрібнодисперсного боровмісного порошку в якості насичувального середовища для хіміко-термічної обробки, що сприяє збільшенню зміцненого шару в 2,7–5,5 разів залежно від зміни швидкості переміщення лазерного променя. 4. Використання розроблених комбінованих технологій поверхневого зміцнення сталевих виробів має такі переваги: спрощена технологія отримання твердого зміцненого шару на сталях за рахунок інтенсифікації процесів хіміко-термічної обробки; забезпечені високі експлуатаційні властивості зміцнених шарів сталевих виробів; застосування технології борувания сталевих виробів дозволяє поєднувати хіміко-термічну обробку (борування) з операцією термообробки (гартування), що підвищить термін служби деталей обладнання, експлуатаційних властивостей дифузійних шарів інструментів, штампового і пресового устаткування. 5. За технологічною ознакою розроблено дві комбіновані технології локального поверхневого зміцнення сталевих виробів. 6. Визначено можливість використання розроблених технологій локального поверхневого зміцнення для широкої номенклатури виробів зі сталей. 7. Розроблений ефективний технологічний процес комбінованого зміцнення поверхневого шару сталевих виробів був впроваджений для підвищення поверхневої твердості зубців зубчастого колеса зі сталі 40 на ТОВ "НВЦ ЄТМ" (м. Харків ). Його впровадження дозволило підвищити зносостійкість зубців у 1,5 рази та експлуатаційну стійкість виробу в цілому до 2,5 разів. 8. Розроблений ефективний технологічний процес комбінованого зміцнення поверхневого шару сталевих виробів був впроваджений для підвищення поверхневої твердості зубців вал-шестерень, зубчастих коліс, шестерень, зірочок та втулок зі сталей 40, 40Х та 38Х2МЮА на ПАТ "Харківський машинобудівний завод "Світло шахтаря". Виробничими випробуваннями встановлено, що розроблений процес комбінованого зміцнення дозволив підвищити поверхневу твердість зубців у 1,5-2,5 рази, зносостійкість у 1,5-2 рази, експлуатаційну стійкість у 3-7 разів у порівнянні з поверхневими зміцнюючими обробками, які використовуються у виробництві. 9. Розроблені технологічні процеси комбінованого зміцнення поверхневого шару сталевих деталей були впроваджені для поверхневого зміцнення зубців вал-шестерні зі сталі 40Х та зубців втулки зі сталі 40Х на АТ "Харківський тракторний завод". Виробничими випробуваннями встановлено, що стійкість вал-шестерні та втулки зі сталі 40Х після комбінованого зміцнення поверхневого шару підвищується від 2 до 3,6 разів у порівнянні зі стійкістю вал-шестерні та втулки зміцненою лише лазерною обробкою. 10. Розробки, виконані в дисертації, впроваджені в навчальний процес для студентів механіко-технологічного факультету НТУ "ХПІ" спеціальностей 131 "Прикладна механіка" спеціалізації 131-09 "Обладнання та технології ливарного виробництва" та 151 "Автоматизація та комп'ютерно інтегровані технології" спеціалізації 151-07 "Комп'ютеризовані системи управління технологічними процесами".