05.02.08 "Технологія машинобудування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/20278

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Основи забезпечення якості та зниження трудомісткості механічної обробки складнопрофільної формуючої оснастки для харчової промисловості
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Полянський, Володимир Іванович
    Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.02.08 – технологія машинобудування (13 – механічна інженерія). Національний технічний університет ''Харківський політехнічний інститут''. – Харків, 2021. Дисертацію присвячено вирішенню актуальної науково-прикладної проблеми теоретичного визначення й обґрунтування умов суттєвого підвищення якості, точності, продуктивності й зниження трудомісткості механічної обробки шляхом зниження її теплової й силової напруженостей та на цій основі розроблення ефективних технологічних процесів обробки складнопрофільної формуючої оснастки для харчової промисловості із застосуванням сучасних високообертових металорізальних верстатів із ЧПУ типу "обробний центр" та прогресивних різальних лезових твердосплавних і керамічних інструментів зі зносостійкими покриттями. Науковою новизною отриманих результатів є те, що вперше розроблено теоретичні підходи до визначення технологічних можливостей підвищення якості та зниження трудомісткості механічної обробки за рахунок зниження її теплової й силової напруженостей. Розроблено спрощені математичні моделі визначення температури різання при шліфуванні та лезовій обробці, які засновані на урахуванні балансу тепла, що виникає в зоні різання та надходить в поверхневий шар оброблюваної деталі, стружки, що утворюється, та охолоджувальну рідину. Вперше проведено узагальнення теоретичних рішень щодо визначення параметрів теплового процесу при механічній обробці із урахуванням досягнення кінцевого значення глибини проникнення тепла в поверхневий шар оброблюваної деталі. Встановлено основний напрямок зниження температури різання і підвищення якості та продуктивності обробки, який полягає в зниженні максимальної температури різання до рівня та нижче температури плавлення оброблюваного матеріалу. Це дозволяє досягти значного підвищення продуктивності обробки фактично без підвищення температури різання. Вперше запропоновано новий універсальний технологічний параметр механічної обробки – максимальну температуру різання, при досягненні якої все тепло, що виділяється при різанні, надходить в стружку, і яка визначається відношенням енергоємності обробки до добутку питомої теплоємності і щільності оброблюваного матеріалу. Це дозволяє порівнювати максимальну температуру різання із температурою плавлення оброблюваного матеріалу та в разі перевищення застосовувати технологічні прийоми її зниження для різних технологій механічної обробки. Встановлено, що зниження енергоємності обробки (умовного напруження різання) є основною умовою зниження максимальної температура різання та, відповідно, температури різання. Показано, що відмінність розрахункових і експериментальних значень температури різання при шліфуванні не перевищує 12%, що вказує на достовірність розробленої математичні моделі визначення температури різання. Розрахунками встановлено, що в реальних умовах шліфування відношення заданої і максимальної температур шліфування може змінюватися лише в межах 0 ... 0,4 в зв'язку із перевищенням максимальною температурою різання температури плавлення оброблюваного матеріалу внаслідок значного збільшення умовного напруження різання. При точінні це відношення може змінюватися в значно більших межах 0 ... 1. Тому максимальна температура різання при точінні буде менше, ніж при шліфуванні і може приймати значення, які менші температури плавлення оброблюваного матеріалу. Це розширює технологічні можливості точіння порівняно із шліфуванням. Вперше встановлено, що найбільш значного зниження температури різання при шліфуванні можна досягти при переривчастому шліфуванні в умовах рівності довжин робочого виступу і вирізу переривчастого круга та збільшення кількості робочих виступів круга. У цьому випадку температура різання може бути знижена більш ніж в 2 рази щодо температури різання при шліфуванні суцільним кругом. Однак максимальна температура різання при цьому приймає значення, які значно вищі температури плавлення оброблюваного матеріалу. Це обмежує технологічні можливості переривчастого шліфування порівняно із лезовою обробкою. Вперше розширено технологічні можливості математичної моделі визначення температури різання при лезовій обробці, яка заснована на урахуванні кількості виникаючих в зоні різання зсувних елементарних об'ємів оброблюваного матеріалу. Встановлено, що з їх збільшенням температура різання може збільшитися до 10 разів. Це можливо при шліфуванні в умовах безперервного контакту зв'язки шліфувального круга із оброблюваним матеріалом. При лезовій обробці кількість виникаючих в зоні різання зсувних елементарних об'ємів оброблюваного матеріалу незначна, що дозволяє знизити температуру різання та підвищити якість і продуктивність обробки. Встановлено, що розроблені в роботі математичні моделі визначення температури різання при механічній обробці позитивно відрізняються від відомих моделей, оскільки аналітично пов'язують всі основні параметри теплового процесу при різанні: температуру різання, максимальну температуру різання, глибину проникнення тепла в поверхневий шар оброблюваної деталі, градієнт температури, розподіл тепла, що надходить в оброблювану деталь, стружку і технологічне середовище. В результаті з'являється можливість із єдиних теоретичних позицій в узагальненому вигляді кількісно оцінити та порівняти температуру різання при шліфуванні й лезовій обробці. Вперше теоретично та експериментально обґрунтовано технологічні можливості суттєвого зниження максимальної температури різання та підвищення техніко-економічних показників механічної обробки на фінішних операціях шляхом переходу від шліфування до сучасних технологій високошвидкісного різання (точіння, розточування і фрезерування на сучасних високообертових металорізальних верстатах із ЧПУ типу ''обробний центр'' різальними твердосплавними і керамічними інструментами зі зносостійкими покриттями). Одержала подальший розвиток і поліпшення математична модель визначення параметрів силової напруженості при лезовій обробці (енергоємності та сили різання) із урахуванням уточнених значень умовного кута зсуву оброблюваного матеріалу. Показано, що у формуванні умовного кута зсуву оброблюваного матеріалу переважає радіальна складова сили різання, яка і призводить до його значного зменшення (в 1,5 разів) порівняно із розрахунковими значеннями, отриманими на основі відомих залежностей. Це дозволило обґрунтувати умови зниження енергоємності обробки і сили різання. Одержала подальший розвиток і поліпшення математична модель визначення пружних переміщень, що виникають в технологічній системі, та встановлено, що вони залежать, в першу чергу, від методу механічної обробки та його енергоємності. Тому основним шляхом підвищення точності та продуктивності обробки є застосування на фінішних операціях сучасних технологій високошвидкісної лезової обробки замість традиційних технологій шліфування та лезової обробки. На основі узагальнення аналітичного опису пружного переміщення при шліфуванні та лезовій обробці із урахуванням енергоємності проведено порівняння величин пружного переміщення для різних технологій механічної обробки, що дозволило вибрати найбільш ефективні варіанти високоточної та високопродуктивної фінішної обробки. Так, теоретично й експериментально обґрунтовано ефективність застосування технології високошвидкісного розточування отворів замість традиційної технології координатного внутрішнього шліфування із метою підвищення точності та продуктивності обробки. Це пов’язано, головним чином, із можливістю зменшення енергоємності обробки при високошвидкісному розточуванні отворів. В цьому випадку максимальна температура різання менше температури плавлення оброблюваного матеріалу. Тому з'являється можливість підвищення продуктивності обробки фактично без збільшення температури різання, оскільки вона незначно відрізняється від максимальної температури різання. При шліфуванні цього домогтися неможливо, оскільки максимальна температура різання завжди більше температури плавлення оброблюваного матеріалу. На цій основі створено методологію розроблення та впровадження у виробництво ефективних технологічних процесів лезової обробки із застосуванням сучасних високообертових металорізальних верстатів із ЧПУ типу ''обробний центр'' та різальних лезових твердосплавних і керамічних інструментів зі зносостійкими покриттями закордонного виробництва. Показано, що вони дозволяють до 10 разів і більше знизити енергоємність і підвищити продуктивність обробки при забезпеченні високих показників якості та точності оброблюваних поверхонь порівняно із шліфуванням. Це дозволило до 10 разів знизити трудомісткість обробки і до 200 разів розширити номенклатуру виробництва складнопрофільної формуючої оснастки для харчової промисловості в умовах дрібносерійного і штучного виробництва із забезпеченням її високої якості та конкурентоспроможності. Розроблено методики розрахунку раціональних структур і параметрів технологічних процесів механічної обробки складнопрофільної формуючої оснастки, що дозволило визначити раціональні режими різання та характеристики різальних інструментів, які забезпечують значне підвищення продуктивності обробки для заданих значень температури та сили різання. Розроблені технологічні процеси механічної обробки складнопрофільної формуючої оснастки для харчової промисловості впроваджено в основне виробництво ТОВ ''Імперія металів'' із економічним ефектом 3,86 млн гривен, що дозволило забезпечити виготовлення високоякісної складнопрофільної формуючої оснастки для підприємств харчової промисловості Міністерства аграрної політики та продовольства України.