Вісник № 22
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/37348
Переглянути
Документ Розробка представлення знань на основі марківських логічних мереж в системі процесного управління(НТУ "ХПІ", 2018) Чала, Оксана ВікторівнаДосліджено проблему побудови представлення знань в системі процесного управління на основі аналізу поведінки бізнес-процесів, що представлена у вигляді логів подій. Кожна подія характеризує дію бізнес-процесу. Актуальність проблеми визначається тим, що при управлінні складними знання-ємними бізнес-процесами виконавці можуть змінювати послідовність дій з урахуванням додаткових знань про предметну область. В результаті виникає невідповідність між процесом та його моделлю, що створює труднощі для подальшого управління бізнес-процесом. Для усунення вказаної невідповідності потрібно формалізувати ці додаткові знання та використовувати їх при процесному управлінні, що потребує створення відповідного представлення знань. Запропоновано модель представлення знань враховує статичні й динамічні характеристики бізнес-процесу. Статичні характеристики бізнес-процесу задаються фактами та правилами із аргументами, представленими атрибутами подій логу. Факти і правила формуються на основі відповідних шаблонів. Атрибути задають значення властивостей об’єктів, з якими оперує бізнес-процес. Динамічні особливості бізнес-процесу визначаються через поточний розподіл ймовірностей виконання правил з урахуванням атрибутів поточної події логу бізнес-процесу. Запропонована модель відрізняється тим, що вона враховує обмеження на допустимі послідовності виконання дій бізнес-процесу, а також обмеження на основі апріорних знань про предметну область. Такі обмеження дозволить понизити складність задачі пошуку ймовірностей успішного завершення бізнес-процесу шляхом скорочення множини допустимих трас в тому випадку, якщо виконавці змінили послідовність дій. В практичному аспекті модель забезпечує можливість підтримки прийняття рішень з управління знання-ємними бізнес-процесами на основі прогнозування ймовірностей досягнення кінцевого стану процесу з урахуванням атрибутів подій логу.