Вісник № 01. Динаміка та міцність машин
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/59899
Переглянути
Документ Вплив на балку кінцевої довжини рухомої маси(Національний технічний університет "Харківський політехнічний інститут", 2022) Поваляєв, Сергій Іванович; Шарапата, Андрій Сергійович; Янютін, Євген ГригоровичУ цій роботі розглянуто розв'язання прямої задачі про деформування ізотропної, пружної, шарнірно-обпертої балки кінцевої довжини. На балку діє каток, що рухається із постійною швидкістю вздовж осі балки. Каток має циліндричну форму певного радіусу і довжину, яка більше або дорівнює ширині балки. Рух балки моделюється на основі теорії С. П. Тимошенко. Описано постановку задачі та умови взаємодії балки та катка. Проаналізовано диференціальні рівняння руху балки з точки зору впливу їх складових та особливо правих частин рівнянь на динамічну поведінку балки у разі використання певних поширених матеріалів балки і катка та запропоновано варіант зведення рівнянь до більш спрощеного виду. Невідомі функції, що входять до рівнянь, шукаються у вигляді рядів Фур'є. Це дозволяє звести вихідні рівняння до звичайних диференціальних рівнянь, які розв'язуються з використанням перетворення Лапласа. Вирази для коефіцієнтів у рядах Фур'є знаходяться з використанням операційного обчислення та теорії лишків. Результати першого чисельного експерименту з дослідження впливу швидкості руху катка на прогини балки представлені у вигляді кривих на рисунку. Для конкретної розрахункової механічної системи у вигляді сталевого катка, який рухається по сталевій балці з постійною швидкістю при нульових початкових умовах, результати дослідження представлені у вигляді графіків прогинів балки для різних швидкостях руху катка. Другий чисельний експеримент проводився для дослідження розповсюдження коливних хвиль балки у разі руху катка на досить високій швидкості. Для цього на рисунку наведені суміщені форми балки і положення катка в різні моменти дії рухомої маси. Проаналізовано поведінку балки на високій швидкості переміщення катка і проведено порівняння прогинів балки з прогинами статичної моделі балки. Намічено подальші напрямки розвитку задачі у прикладних галузях техніки та у обернених задачах з ідентифікації невідомих параметрів за непрямими проявами.