141 "Електроенергетика, електротехніка та електромеханіка"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/49050
Переглянути
10 результатів
Результати пошуку
Документ Системи активного екранування зовнішнього магнітного поля вбудованих трансформаторних підстанцій(2023) Кундіус, Катерина ДмитрівнаДисертація на здобуття наукового ступеня доктора філософії зі спеціальності 141 – Електротехніка, електроенергетика та електромеханіка (14 – Електрична інженерія). – Національний технічний ніверситет «Харківський політехнічний інститут», Харків, 2023. Об’єктом дослідження є зовнішнє магнітне поле міських трансформаторних підстанцій. Предметом досліджень є системи активного екранування зовнішнього магнітного поля вбудованих трансформаторних підстанцій. В дисертаційній роботі вирішена науково-практична задача синтезу систем активного екранування зовнішнього магнітного поля вбудованих у житлові будинки міських трансформаторних підстанцій потужністю 100 – 1260 кВА для зменшення індукції їх магнітного поля до безпечного для населення рівня в прилеглих житлових приміщеннях. Дослідження виконано на основі фундаментальних положень теоретичної електротехніки, методах математичного та фізичного моделювання джерел магнітного поля, аналітичних та чисельних методів аналізу та сучасних інформаційних технологіях. У вступі обґрунтовано актуальність теми дисертації, визначені задачі дослідження, показано зв’язок роботи з науковими програмами, планами, темами, наведено дані про наукову новизну, практичне значення, апробацію результатів та публікації. У першому розділі проведено аналіз результатів виконаних в Європі досліджень магнітного поля вбудованих підстанцій 10/0,4 кВ потужністю 600 – 1000 кВА, де максимальний рівень індукції магнітного поля фіксується у житлових приміщеннях над підстанціями і лежить в діапазоні 4–13 мкТл. Це істотно перевищує безпечний для населення рівень згідно із рекомендаціям Всесвітньої організації охорони здоров’я (0,2–0,3 мкТл), а також допустимий рівень магнітного поля промислової частоти, прийнятий в Україні (0,5 мкТл), що потребує його зменшення більш ніж на порядок. Проведено аналіз методів моделювання і розрахунку магнітного поля, а також розроблених для повітряних ліній електропередачі методів мультидипольного моделювання, які мають хорошу фізичну інтерпретацію, бажану для спрощення синтезу систем активного екранування. Проаналізовані такі прийнятні для підстанцій методи зменшення їх магнітного поля, як активне екранування. Обґрунтована актуальність досліджень зовнішнього магнітного поля розповсюджених в Україні міських підстанцій 100–1260 кВА, які вбудовуються у житлові будинки, а також розвитку оптимізаційних методів синтезу систем активного екранування магнітного поля підстанцій. Обрано напрями досліджень, поставлені основні задачі дисертаційної роботи. У другому розділі наведено результати експериментальних досліджень розподілу індукції магнітного поля частотою 50 Гц для 110 типових міських трансформаторних підстанцій 10(6)/0,4 кВ потужності 100–1260 кВА м. Харкова, які можуть вбудовуватися у житлові будинки. Показано, що індукція магнітного поля може перевищувати нормативний рівень за умови наближення до підстанцій на відстань від 6 м (100 кВА) до 10 м (1260 кВА) і досягає від 2 до 8 мкТл, і це потребує її зменшення від 4 до 16 разів. Досліджено вклад в загальне магнітне поле підстанції окремих джерел їх магнітного поля, та показано, що основним джерелом зовнішнього магнітного є їх розподільчий пристрій – низьковольтний струмопровід, вклад якого на відстані 2 м складає більше 90%, що дозволяє в подальших розрахунках не враховувати інші джерела магнітного поля (трансформатор, кабелі, високовольтний струмопровід). Удосконалено та експериментально обґрунтовано мультидипольну математичну модель зовнішнього магнітного поля трифазних струмопроводів підстанцій шляхом її побудови на основі двофазної моделі трифазного електричного кола, яка в порівнянні із відомою мультидипольною моделлю дозволяє без збільшення похибки, вдвічі наблизити розрахункову область і здійснювати розрахунок у всіх прилеглих житлових приміщеннях, які розташовані на відстані від одного метра до підстанції. Виконано розрахунокіндукції магнітного поля в житлових приміщеннях будинків з вбудованими підстанціями та здійснено експериментальну перевірку результату. Визначена необхідна ефективність екранування магнітного поля у прилеглих житлових приміщеннях, яка повинна складати 4–16 одиниць. У третьому розділі обґрунтовано виконання систем активного екранування магнітного поля вбудованих підстанцій в розімкненій структурі управління та розроблено методику їх синтезу. Вона ґрунтується на удосконаленій двофазній мультидипольній математичній моделі магнітного поля трифазних струмопроводів, законі Біо-Савара, та методі оптимізації мультироєм частинок з множини Парето-оптимальних рішень з урахуванням бінарних відносин переваги, що дозволяє синтезувати системи із необхідною ефективністю. Виконано синтез систем із однією та двома плоскими чотирикутними компенсаційними обмотками при різних (1–2 м) відстанях до житлових приміщень для 6 типів вбудованих підстанцій різної потужності. За результатами синтезу запропоновані структури та параметри систем екранування, які доступні для фізичної реалізації і мають ефективність 6–16 одиниць. При цьому теоретична ефективність екранування магнітного поля складає біля 8 од. при використанні однієї компенсаційної обмотки і біля 16 од. при використанні двох компенсаційних обмоток. В останньому випадку питома потужність системи екранування зростає із 0,7 Вт/м2 житлової площі до 4,7 Вт/м2, що обумовлює відповідне збільшення собівартості систем та вартості їх експлуатації. У четвертому розділі приведено опис створеної лабораторної установки із повномасштабним фізичним макетом низьковольтного струмопроводу підстанції 100 кВА та повномасштабним фізичним макетом синтезованої для нього системи активного екранування, на яких здійснено експериментальні дослідження їх магнітного поля за розробленою здобувачем методикою вимірювань. Виконано експериментальну перевірку запропонованої удосконаленої двофазної мультидипольної математичної моделі магнітного поля трифазного струмопроводу, яка підтвердила співпадіння результатів розрахунку і експерименту з розкидом менше 7% та коректність запропонованої математичної моделі. Також виконано експериментальну перевірку теоретичних положень запропонованої методики синтезу систем активного екранування, яка підтвердила співпадіння результатів розрахунку і експерименту з розкидом менше 10% та коректність запропонованої методики синтезу. Розроблені практичні рекомендації з побудови систем активного екранування, що передбачають формування сигналів управління системи на основі мікроконтролера, періодичне настроювання системи під контролем магнітного поля, а також виконання підсилювача потужності системи на основі підсилювачів звукової частоти класу АВ. В дисертації отримані наступні наукові результати: 1. Запропонована та експериментально обґрунтована удосконалена мультидипольна математична модель зовнішнього магнітного поля трифазного струмопроводу, яка ґрунтується на двофазній дипольній моделі трифазного електричного кола. Запропонована модель в порівнянні із відомою трифазною мультидипольною моделлю дозволяє без збільшення похибки вдвічі наблизити розрахункову область, та забезпечує розрахунок магнітного поля від вбудованої трансформаторної підстанції для всіх наближених до неї житлових приміщень будинку, які розташовані на відстані від одного метра. 2. Вперше розроблена та експериментально обґрунтована методика синтезу систем активного екранування магнітного поля вбудованих трансформаторних підстанцій потужністю 100–1260 кВА. Методика ґрунтується на удосконаленій двофазній мультидипольній математичній моделі магнітного поля струмопроводу, законі Біо-Савара для визначення магнітного поля системи екранування, а також методі оптимізації елементів системи мультироєм частинок з множини Парето-оптимальних рішень з урахуванням бінарних відносин переваги і дозволяє синтезувати системи із теоретичною ефективністю 6–16 одиниць, які зменшують магнітне поле в наближених житлових приміщеннях до рівня санітарних норм. 3. Вперше запропоновано здійснювати синтез систем активного екранування потенційного магнітного поля вбудованих трансформаторних підстанцій із визначенням магнітного поля не у всьому об’ємі житлового приміщення, а на контрольній площині D, яка максимально наближена до підстанції, і розташовується у приміщенні паралельно підлозі (стіни), і це дозволяє істотно зменшити обсяг обчислень при гарантованому зменшенні потенційного магнітного поля у всьому об’ємі приміщення за площиною D. 4. Набули подальшого розвитку методи розрахунку зовнішнього магнітного поля активних конструктивних елементів трансформаторної підстанції. Методи реалізовані на основі удосконаленої мультидипольної моделі магнітного поля струмопроводів, циліндричних просторових гармонік магнітного поля кабелів, та ймовірнісно-статистичного методу прогнозування магнітного поля трансформатора, що дозволило виявити та експериментально обґрунтувати основне джерело магнітного поля підстанції – її низьковольтний струмопровід, вклад якого в загальний рівень магнітного поля на відстані 2 м складає більше 90%, що дозволяє в інженерних розрахунках не враховувати інші джерела магнітного поля. Достовірність теоретичних результатів, отриманих у дисертації, підтверджено експериментальною перевіркою удосконаленої математичної моделі магнітного поля підстанції ТП 100 кВА та синтезованої для неї системи активного екранування на лабораторній установці із повномасштабними фізичними макетами струмопроводу підстанції 100 кВА та синтезованої системи активного екранування, результати якого показали співпадіння отриманих в дисертації теоретичних положень та експерименту із похибкою менше 10%. Результати досліджень використано при виконанні наукових досліджень за наступними плановими темами: 1. «Розвиток наукових засад нормалізації геомагнітного поля в приміщеннях сучасних житлових будинків» (шифр «БІОМАГ 2», № ДР 0116U005462, 2017 – 2021 рр.), де здобувач була відповідальним виконавцем; 2. «Розвиток методів та засобів нормалізації магнітного поля промислової частоти у приміщеннях житлових будинків, що створюється вбудованими трансформаторними підстанціями та побутовим електрообладнанням» (шифр «ЕКОМ», № ДР 0122U001772, 2022 – 2026 рр.), де здобувач є виконавцем окремих розділів. Результати дисертаційних досліджень передані до впровадження ТОВ «КиївПромЕлектроПроект» для розробки нормативних документів з проектування міських трансформаторних підстанцій із екологічно безпечним для населення рівнем електромагнітного поля промислової частоти.Документ Методи обробки рідин за допомогою високовольтних розрядів і сильних імпульсних електричних полів(Національний технічний інститут "Харківський політехнічний інститут", 2021) Макогон, Артем ВіталійовичДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 141– Електроенергетика, електротехніка та електромеханіка (14 – Електрична інженерія). – Національний технічний університет «Харківський політехнічний інститут» Міністерства освіти і науки України, Харків, 2021. Об’єктом дослідження є процеси при обробці рідин сильними імпульсними електричними полями і високовольтними розрядами. Предметом дослідження є процеси розвитку розрядів у газових бульках при знезаражувальній обробці і очищенні води такими розрядами і процеси формування сильних імпульсних електричних полів в робочих камерах при знезаражувальній обробці молока, молочної сироватки, води. Дослідження виконано за допомогою фундаментальних положень техніки сильних електричних та магнітних полів, техніки високих напруг, теоретичної електротехніки, математичної фізики, чисельних методів аналізу, сучасних інформаційних технологій та методів вимірювання швидкоплинних процесів. В дисертаційній роботі вирішена науково-практична задача обробки рідин за допомогою високовольтних розрядів у газових бульках у воді і сильних імпульсних електричних полів. У вступі обґрунтовано актуальність теми дисертації, визначені задачі дослідження, показано зв’язок роботи з науковими програмами, планами, темами, наведено дані про наукову новизну, практичне значення, апробацію результатів та публікації. У першому розділі проведено огляд використання імпульсних, в тому числі розрядних, технологій для обробки рідин. Наведено механізми очистки води від різноманітних домішок і інактивації мікроорганізмів, в тому числі кишкової палички Escherichia coli під впливом коронних розрядів, іскрового і дугового розряду, бар’єрного розряду, озонування, вдосконалених процесів окислення у реакторах з розрядами біля поверхні води, усередині води та у газових бульках у воді. Розглянута обробка води і текучих продуктів за допомогою сильних імпульсних електричних полів. Основний принцип технології обробки імпульсними електричними полями (ІЕП) полягає в застосуванні коротких імпульсів сильних електричних полів тривалістю від нано- до мілісекунд і напруженостей порядку 10-80 кВ/см. Технологія ІЕП представлена, як така, що має переваги в порівнянні, наприклад, з термообробкою, тому що вона ефективніше інактивує мікроорганізми і краще підтримує первісний колір, смак, текстуру і поживну цінність соків, вин, молочних продуктів. Обрано напрями досліджень, поставлені основні задачі дисертаційної роботи. У другому розділі показано яким чином експериментально досліджено і проведено знезаражувальну обробку текучих харчових продуктів (молока, молочної сироватки, води), засіяних показовими бактеріями – Escherichia coli, за допомогою комплексу високовольтних імпульсних дій (КВІД). Виконано експериментальну перевірку роботи генератора імпульсних напруг Аркадьєва-Маркса в режимі покаскадного загострення фронту імпульсів на навантаження не більше 50 Ом у вигляді трьох робочих камер з оброблюваною водою, включених паралельно. Експериментально отримані розряди в газових бульках з характерним розміром 1-4 см в воді. Частота проходження розрядів досягала 10000 імп/с при амплітуді імпульсів напруги на реакторі 8 кВ і струмах в розрядному контурі приблизно 0,2 А. Попередні дослідження щодо очищення води, використовуваної при виробництві коксу, а також води поверхневих водойм показали, що за допомогою розрядів в газових бульках в ній вода ефективно очищається від фенолів (зменшення на 60,3%), роданидов (зменшення на 94%). Річкова вода освітлюється і робиться більш прозорою, усуваються небажані запахи, зменшується біохімічне споживання кисню нею. Створено експериментальний стенд для очищення води за допомогою наносекундних розрядів в газових бульках. З його допомогою отримано розряди наносекундної тривалості в газових бульках усередині води. Частота проходження розрядів досягала 2500 імп/с при амплітуді імпульсів напруги на реакторі 30 кВ і амплітуді імпульсів струму в розрядному контурі до 35 А. Показана можливість очищення води, що містить нітрат амонію NH₄NO₃, від аміаку. Досягнуто зменшення концентрації аміаку (NH₃) на 37%. Продемонстровано повна інактивація бактерій при обробці 3 л водопровідної води, з бактеріями E. coli при початковій концентрації 10⁶ КУО/см³ (КУО ‒ колоніє утворюючі одиниці), за допомогою наносекундних імпульсів в газових бульках протягом 7 хвилин обробки, за даними лабораторії КП «Санепідсервіс» (м. Харків). У третьому розділі здійснено комп’ютерне моделювання за допомогою методу скінченних елементів утворення і розвитку у часі імпульсного електричного розряду у газовій бульці усередині води з урахуванням розподілу електричного поля у двофазному середовищі газ (плазма) – вода з неоднорідними включеннями і плазмохімічних реакцій з утворенням активних мікрочастинок, в тому числі радикалів ОН, які забезпечують високий ступінь знезараження і очищення води у сукупності з широкосмуговим випромінюванням від розрядів у газових бульках у воді. Спочатку відбувається наростання напруженості електричного поля тільки поблизу вістря. До 4 нс електричне поле у вістря (стрижня) набагато більше, ніж у воді і досягає значень 15 кВ/см. Зі збільшенням потенціалу на високовольтному електроді, утворенням нових електронів та іонів відбувається зростання провідності в газовій бульці. Приблизно з 16-18 нс напруженість електричного поля у воді досягає значень 30 кВ/см. Також розрахована оціночна величина питомих енерговитрат в проточному режимі при КВІД обробці продуктів. Вона становить Еsp≈6 кВт∙год/м³, що приблизно в 4 рази менше, ніж при традиційній тепловій обробці ‒ пастеризації. У четвертому розділі описані експериментальні зразки дослідно-промислових установок. Запропонований спосіб обробки рідин і текучих продуктів (на який одержано патент на винахід) є енергозберігаючим і може використовуватися в різних галузях промисловості, у тому числі харчовій промисловості, при виробництві соків, вин, напоїв, обробці та переробці молока, при виробництві молочних продуктів, у фармакології. Створена і успішно випробувана експериментальна високовольтна імпульсна установка з номінальною імпульсною потужністю 3 МВт, в якій знезараження води в потоці здійснюється за допомогою наносекундних розрядів в газових бульках. Результати досліджень дозволили отримати низку нових наукових результатів: 1. Експериментально одержано надійний багатоканальний режим роботи вихідного багатоканального розрядника ГІНПЗ на низькоомне навантаження у вигляді трьох робочих камер, включених у паралель і заповнених водопровідною водою, сумарний опір яких менше 50 Ом. 2. Експериментально отримані синхронні наносекундні розряди у газових бульках у воді у трьох розрядних вузлах експериментальної установки, включених в паралель, з імпульсною потужністю на навантаженні установки до 3 МВт, сумарною амплітудою струму до 100 А при амплітуді напруги на розрядних вузлах до 30 кВ і частоті проходження імпульсів більше 2000 імп/с при роботі в паралель трьох багатозазорних багатоканальних потужнострумових повітряних іскрових розрядників при атмосферному тиску з часом комутації менше 10 нс і ресурсом більше 10 мільярдів імпульсів. 3. Експериментально показана висока знезаражувальна дія на воду наносекундних розрядів в газових бульках усередині води в проточному режимі зі швидкістю до 120 л/год, яка (дія) на показових мікроорганізмах E. coli, при їх початковій концентрації у воді 1 мільйон колонієутворюючих одиниць у кубічному сантиметрі, сягає 100% і є необоротною при питомих енерговитратах не більше 1 кВт∙год/м³. 4. Здійснено моделювання утворення і розвитку у часі імпульсного електричного розряду у газовій бульці у середині води з урахуванням розподілу електричного поля у двофазному середовищі газ (плазма) – вода з неоднорідними включеннями і плазмохімічних реакцій з утворенням активних мікрочастинок, в тому числі радикалів ОН, які забезпечують високий ступінь знезараження і очищення води у сукупності з широкосмуговим випромінюванням від розрядів у газових бульках у воді.Документ Вдосконалення підходів визначення параметрів тролейних шинопроводів систем цехового електропостачання з нелінійними навантаженнями(Національний технічний університет "Харківський політехнічний інститут", 2021) Безверхня, Юлія СергіївнаДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 141 – Електроенергетика, електротехніка та електромеханіка – Національний університет "Запорізька політехніка", Національний технічний університет "Харківський політехнічний інститут", Запоріжжя, 2021. Об'єкт дослідження – електромагнітні процеси в тролейних шинопроводах систем цехового електропостачання в умовах впливу гармонійних складових струму навантаження. Предмет дослідження – електромагнітні параметри тролейних шинопроводів систем цехового електропостачання при нелінійному навантаженні. Дисертаційна робота присвячена вирішенню актуального науково-прикладного завдання, спрямованого на вдосконалення підходів моделювання електромагнітних процесів і підвищення точності визначення параметрів тролейного шинопровода з врахуванням впливу гармонійних складових струму навантаження. У вступі обґрунтовано актуальність задач дослідження, показано зв’язок роботи з науковими програмами, планами, темами, наведена наукова новизна та сформульоване практичне значення отриманих результатів. В першому розділі встановлено, що існуючі методики розрахунку активного та реактивного опорів та електромагнітних параметрів тролейних шинопроводів, що основані на польовому моделюванні не забезпечують високу точність та ефективність, так як не враховують наявність гармонійних складових струму. Інші методики розрахунку параметрів тролейних шинопроводів, що основані на емпіричних залежностях та застосовуються на інженерній практиці мають припущення щодо відсутності впливу скін-ефектів, ефектів близькості, поверхневих та інших крайових ефектів, не враховують електрофізичні та нелінійні властивості матеріалів провідників. Відсутні дослідження щодо порівняльного аналізу активного та реактивного опорів й електромагнітних параметрів існуючих профілів тролеїв. Недостатня вивченість електромагнітних процесів при наявності вищих гармонік струму в провідниках шинопровода, не встановлені співвідношення падіння напруги та активних втрат для різних форм тролеїв шинопровода від спектрів частот і амплітуд k -х гармонік струму та коефіцієнту гармонійних спотворень. В другому розділі удосконалено метод польового розрахунку, на основі якого запропоновано математичну двовимірну польову модель електромагнітних процесів в елементах конструкції тролейного шинопровода у частотній постановці задачі, яка у порівнянні з просторовою часовою моделлю електромагнітного поля, дозволяє з високою точністю (1,88%÷2,06%) та ефективністю чисельної реалізації для кожної відповідної амплітуди і частоти k - ї гармоніки струму навантаження визначати активний та реактивний опори та електромагнітні параметри тролейного шинопровода з врахуванням їх конструктивних особливостей, нелінійності магнітних та електрофізичних властивостей матеріалів, скін-ефекту, ефекту близькості, поверхневих та інших крайових ефектів. За результатами польового розрахунку встановлено співвідношення падіння напруги та активних втрат для різних форм тролеїв шинопровода від спектрів частот і амплітуд k -х гармонік струму і коефіцієнту гармонійних спотворень, що дозволяє виявити ступінь і характер впливу на асиметрію падіння напруги і параметрів тролеїв шинопровода. Проведено дослідження та порівняльний аналіз активних і реактивних опорів L, W, I, U, X- форм тролеїв шинопровода з врахуванням впливу скін-ефекту, ефекту близькості, поверхневих та інших крайових ефектів. Встановлено, що найбільш оптимальною формою сталевих і мідних тролеїв шинопровода є куткова форма тролеїв (L-форма), для якої забезпечується найменше значення активного і реактивного опорів, активних втрат і втрат напруги, а також найменший рівень несиметрії між фазами шинопровода, як при основній, так і при вищих гармоніках струму. Встановлено, що при наявності вищих гармонік струму, параметри (активний і реактивний опори) тролеїв шинопровода не залежать від амплітуди k -х гармонік струму, а залежать лише від їх частоти. Значення падіння напруги при визначених параметрах тролеїв шинопровода з врахуванням впливу скін-ефекту, ефекту близькості, поверхневих, та інших крайових ефектів має прямо пропорційну залежність від амплітуди k -х гармонік струму. Рівень несиметрії падіння напруги для всіх форм фазних тролеїв шинопровода викликано несиметрією їх параметрів. Запропоновано алгоритм, який дозволяє на основі даних польового моделювання, з врахуванням особливості конструкції тролейного шинопровода (форми тролеїв, їх розташування, при та без наявності екрануючих елементів) та скін-ефекту, ефекту близькості, поверхневих, та інших крайових ефектів встановити функціональну залежність падіння напруги від частоти та амплітуди вищих гармонік струму, яка представлена у вигляді бікубічного полінома, і дозволяє для діючих спектрів і амплітуд вищих гармонік струму, підібрати необхідні значення коефіцієнтів полінома без витрат часу на польове моделювання. В третьому розділі удосконалено підхід щодо визначення активного та реактивного опорів й електромагнітних параметрів тролейного шинопровода з врахуванням гармонійних складових струму навантаження, конструктивних особливостей тролеїв, нелінійності магнітних та електрофізичних властивостей матеріалів, скін-ефекту, ефекту близькості, поверхневих та інших крайових ефектів. На основі даного підходу запропоновано нову методику, яка з високою точністю та ефективністю без витрат часу на польове моделювання, для кожної k -ї гармоніки струму дозволяє визначити значення активного, реактивного опорів і падіння напруги з врахуванням і без врахування дії зовнішнього магнітного поля, незалежно від форми і розташування тролеїв, відстані між ними і кількості фаз шинопровода. Вдосконалено математичну модель щодо визначення втрат напруги в тролеях шинопровода в залежності від коефіцієнту потужності мережі, яка відрізняється від відомої тим, що дозволяє для кожного спектру частоти вищих гармонік струму врахувати кут зсуву за фазою падіння напруги, викликаного дією зовнішнього магнітного поля від струмів в сусідніх тролеях шинопровода, який дорівнює arctg(Xk/Rk). Нев’язка втрати напруги за вдосконаленою математичною моделлю та результатами польового розрахунку при основній гармоніці струму складає |δΔU1| ≤ 0,02%, при врахуванні вищих гармоніках струму – |δΔUрез| ≤ 0,14%. Засобами експериментального дослідження доведено адекватність та високу точність (3,03÷8,57% в залежності від cosϕ) запропонованого підходу щодо визначення активного та реактивного опорів й електромагнітних параметрів тролейного шинопровода. В четвертому розділі запропонована імітаційна модель взаємопов’язаних електромагнітних процесів між електроприводом механізму переміщення та струмопровідними елементами мостового крана, яка відрізняється тим, що дозволяє за даними розрахунку польової моделі використовувати інтегровані параметри тролеїв шинопровода та визначити їх електромагнітні параметри в залежності від відстані розташування мостового крана до точки живлення тролеїв шинопровода. На прикладі роботи механізму переміщення існуючого мостового крана 32т механічного цеху ТОВ "ЗЛМЗ" м. Запоріжжя проведено дослідження взаємопов’язаних електромагнітних процесів між електроприводами механізму переміщення мостового крану та тролеями шинопровода. Встановлені закономірності моменту асинхронного електроприводу від втрат напруги в тролеях шинопровода, що дозволяють, як при основній так і при вищих гармоніках струму, визначити максимальну допустиму відстань переміщення мостового крану до точки підживлення секції тролеїв шинопровода, при якій забезпечується безаварійна робота електроприводу мостового крану, а також визначити кількість точок підживлення секцій тролеїв шинопровода та відстані між ними, що забезпечить однаковий рівень втрат напруги та активних втрат в тролеях шинопровода при основній гармоніці і з врахуванням вищих гармонік струму навантаження. На основі теоретичного дослідження були розроблені рекомендації щодо зниження втрат напруги та активних втрат в тролеях шинопровода при роботі частотно-регульованого електроприводу механізмів мостового крану. Результати дисертаційних досліджень впроваджені та використані на ТОВ "Запорізький ливарно-механічний завод" м. Запоріжжя (гірничо-металургійної групи ТОВ "Метінвест Холдинг"), що забезпечило збереження проектних показників втрат напруги та активних втрат в тролеях шинопровода живлення мостового крану після модернізації на частотно-регульований електропривод.Документ Електропривод електромобіля з двоступеневою коробкою передач(Національний технічний університет "Харківський політехнічний інститут", 2021) Сакун, Євгеній ВладиславовичДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 141 "Електроенергетика, електротехніка та електромеханіка" (14 – Електрична інженерія) – Національний технічний університет "Харківський політехнічний інститут", 2021. Роботу виконано на кафедрі "Автоматизовані електромеханічні системи" Національного технічного університету "Харківський політехнічний інститут" Міністерства освіти і науки України. Об’єкт дослідження – системи автоматичного регулювання електропривода електромобіля з двоступеневою коробкою передач, що забезпечують синхронізацію швидкостей та фаз валів. Предмет дослідження – електромеханічні та електромагнітні процеси в електроприводі електромобіля при перемиканні двоступеневої коробки передач із забезпеченням синхронізації швидкостей валів та їх фаз. Дисертаційне дослідження присвячене підвищенню енергоефективності електропривода електромобіля за рахунок використання двоступеневої коробки передач, яка є більш простою у порівнянні з традиційною багатоступеневою коробкою передач і тому більш надійною, дешевшою та легшою, а також не потребує механічних синхронізаторів для вирівнювання швидкостей валів. В роботі пропонується, на відміну від відомих технічних рішень, здійснювати не тільки синхронізацію швидкостей валів, а також забезпечувати автоматичну синхронізацію їх фаз, що підкріплено патентом України, одержаним автором. При цьому підвищується швидкодія перемикання ступенів, усунення удару, покращується плавність руху. Дисертація пов’язана з актуальною світовою проблемою економії паливних органічних енергетичних ресурсів, особливо важливою для України, яка забезпечена власними ресурсами лише на половину і споживає більшість нафти та газу за рахунок валютних коштів. Як відомо, ця актуальність визначається не тільки необхідністю зберігання органічних ресурсів, які є також сировиною для виготовлення пластмас, гербіцидів, фарб та інш., а й сприяє вирішенню екологічної проблеми, бо вже зараз у великих містах рівень вихлопних газів досягає, а іноді й перевищує, критичний. У вступі обґрунтовано вибір теми дослідження та актуальність дисертаційної роботи, сформульовано мету і задачі, визначено об’єкт, предмет і методи дослідження, показано зв’язок роботи з науковими темами за планами МОН України, надано наукову новизну та сформульовано практичне значення отриманих результатів. Перший розділ присвячено огляду літературних джерел за темою дисертаційної роботи, зокрема комплексному аналізу стану автомобільного та електромобільного транспорту, типовим рішенням побудови трансмісій автомобілів та електромобілів. Розглянуті основні компоненти тягового електроприводу електромобілів, зроблено порівняння різних типів джерел електроживлення, напівпровідникових перетворювачів, електродвигунів, та обґрунтовано вибір їх типів для побудови систем керування та моделювання електромагнітних, електромеханічних та механічних процесів, що досліджуються і мають місце при перемиканні ступенів коробки передач з узгодженням швидкостей та фаз валів. З’ясована фізична природа підвищення енергоефективності електропривода електромобіля при використанні двоступеневої коробки передач. Сформульовано задачі дослідження. У другому розділі відмічена можливість спрощення форми кулачків валів муфти перемикання, а також обґрунтовано функціональну схему електромеханічної системи керування та принципову схему силової частини тягового електропривода з урахуванням створеного на кафедрі електромобіля на базі автомобіля "Ланос". У третьому розділі побудовано математичну та комп’ютерну моделі електромеханічної системи електромобіля. Математична модель включала чотири групи рівнянь: рівняння механіки, рівняння силових електричних кіл, рівняння електромеханічного перетворення енергії, рівняння керування. Рівняння механіки враховували нелінійність опору руху автомобілю внаслідок наявності аеродинамічної складової, зміну приведеного до швидкості валу електродвигуна моменту інерції при перемиканні ступенів від першої до нейтральної, від нейтральної до другої і навпаки. Враховуючи значну частоту широтно-імпульсної модуляції напівпровідникового перетворювача, електромагнітну інерційність кола якоря електродвигуна та велику механічну інерційність рухомих частин електромобіля, математична модель перетворювача та електромеханічного перетворення енергії електродвигуном представлена по гладкій складовій – а саме аперіодичними ланками першого порядку. Керування електроприводом було обрано мікропроцесорним, що дозволило окрім рішення задач регулювання координат вирішувати необхідні логічні задачі. При існуючій тактовій частоті мікроконтролерів сигнали керування також можна розглядати як аналогові. Запропоновано вирішити проблему узгодження швидкостей валів та їх фаз використанням системи підпорядкованого керування. При цьому в контурі струму синтезовано ПІ-регулятор, а в контурі швидкості П-регулятор. Узгодження фаз валів забезпечено доповненням вищевказаної системи керування зворотним зв’язком за положенням, значення якого вираховується мікропроцесором за даними енкодерів. Комп’ютерна модель була побудована у пакеті MATLAB/Simulink за структурними схемами усіх складових електромеханічної системи електропривода електромобіля. У четвертому розділі наведені вхідні дані для комп’ютерного моделювання, які включали параметри коробки передач, електродвигуна, електромобіля, значення коефіцієнтів тертя кочення та аеродинамічного опору. Розглянуто процес розгону електромобіля з послідовним перемиканням коробки передач у наступних випадках: 1 - функціонує тільки система синхронізації швидкостей валів; 2 - функціонує система синхронізації швидкостей валів і фаз при налаштуванні на модульний оптимум; 3 - функціонує система регулювання швидкостей і фаз при зниженому коефіцієнті П-регулятора. Показано, що 2-й варіант викликає коливання фази у перехідному процесі, що усовується при реалізації 3-го варіанта. Перевірка комп’ютерним моделюванням процесу автоматичного узгодження швидкостей валів електродвигуна та вихідного валу коробки передач показала, що швидкодія узгодження швидкостей валів залежить від початкових умов і тим більше, чим більше їх неузгодженість. Як видно із часових діаграм при достатньо значній неузгодженості їх узгодження займає 60-68 мс. Синхронізація фаз починається після узгодження швидкостей і виконується за 28-29 мс. Тобто загальний час синхронізації швидкостей і фаз валів дорівнює 88-97 мс, що суттєво менше нормативних даних для легкових автомобілів (150-200 мс). У п’ятому розділі розроблено лабораторний стенд для експериментальних досліджень та створена методом 3D-моделювання двоступенева коробка передач і доведена можливість спрощення кулачків муфти перемикання передач і шестерні з забезпеченням надійного перемикання ступенів. Теоретичні та прикладні результати дисертаційної роботи використано у навчальному процесі кафедри "Автоматизовані електромеханічні системи" НТУ "ХПІ" для навчання студентів спеціальності 141 "Електроенергетика, електротехніка та електромеханіка" у лекційних курсах "Електрообладнання електромобіля", "Актуальні проблеми сучасного електропривода" та при підготовці лабораторного практикуму. Результати дисертаційної роботи впроваджено при виконанні теми М3423 МОН України "Дослідження енергоефективного електропривода електромобіля подвійного призначення з підвищеними тяговими та маскувальними характеристиками" в якій розділ "Підвищення енергоефективності електромобіля за рахунок спрощеної коробки передач" виконано автором дисертації особисто.Документ Дослідження асинхронного електропривода електромобіля у режимах рекуперації та буксування(Національний технічний університет "Харківський політехнічний інститут", 2021) Воробйов, Богдан ВіталійовичДисертація на здобуття наукового ступеня PHD доктора філософії за спеціальністю 141 "Електротехніка, електроенергетика та електромеханіка". – Національний технічний університет "Харківський політехнічний інститут", МОН України, Харків, 2021. Дисертаційна робота присвячена дослідженню асинхронного електроприводу електромобіля у різних режимах роботи, виявленню особливостей поведінки електроприводу з урахуванням основних типів навантаження та механічних частин, визначення способу ідентифікації буксування та його запобігання засобами електроприводу. Об’єктом дослідження є процеси перетворення енергії в асинхронному електроприводі у різних режимах руху електромобіля. Предметом дослідження є дослідження електропривода у режимах рекуперації та буксування, визначення ознак переходу електромобіля у режим буксування та підвищення безпеки руху засобами електропривода. Проведений аналіз літератури свідчить про безумовне збільшення світового виробництва електромобілів в найближчому майбутньому. Україна повинна своєчасно відреагувати на дану тенденцію підготовкою відповідних фахівців, проведенням наукових досліджень, мати власні актуальні напрацювання і дослідження. Обрана найбільш актуальна структура електроприводу електромобіля. Вид функціональної схеми визначається характером перетворення енергії в процесі руху електромобіля. Джерелом енергії є батарея акумуляторів, що забезпечує на виході постійну напругу. Перетворення постійної напруги в змінну, необхідне для живлення асинхронного двигуна, забезпечується силовим електронним перетворювачем – трифазним автономним інвертором напруги. Інвертор напруги виконує функції регулювання як частоти, так і значення напруги з векторним керуванням, а саме DTC. Керування інвертором здійснюється мікропроцесорним блоком, що здійснює ввімкнення і вимкнення ключів автономного інвертора за алгоритмом ШІМ. Перетворення електричної енергії в механічну здійснюється асинхронним двигуном, на валу якого формується механічний момент. Підвищення моменту на валах коліс з відповідним зниженням швидкості досягається за допомогою механічної коробки перемикання передач. Виходячи зі стандартного міського циклу руху транспорту, були побудовані діаграми і зроблений вибір потужності двигуна. Був проведений аналіз енергетичних характеристик електроприводу зі встановленою коробкою передач та без неї. Зіставляючи отримані співвідношення для двигуна без застосування коробки перемикання передач видно, що потужності в сталому режимі рівні, проте в динамічних режимах роботи необхідна потужність, що приблизно в 1,5 рази перевищує потужність двигуна при використанні КПП. Отже, використання КПП виправдано і доцільно, так як необхідна потужність двигуна в динамічних режимах значно нижче, а також немає необхідності в значних конструкційних змінах при переобладнанні автомобіля в електромобіль. Побудовано математичну модель електромеханічної системи електроприводу. По ній побудована комп'ютерна модель в пакеті Matlab, і була складена на елементах бібліотеки SimPowerSystems. До складу моделі входять такі основні елементи: - система електроживлення; - інвертор (IGBT-Inverter); - асинхронний двигун; - система керування; - блок формування моменту навантаження; - трансмісія; - блок моніторингу вимірюваних величин; - блок ініціалізації параметрів. Проведено комп'ютерне моделювання електроприводу в різних режимах роботи. Особливу увагу приділено режимам пробуксовування, коли одне з коліс частково або повністю втрачає зчеплення з дорожнім покриттям. Отримані графіки показують неузгодженість швидкостей двох коліс, яка має місце при наїзді на ділянку дорожнього покриття зі зниженим коефіцієнтом зчеплення, а також перехідні процеси при наїзді двома колесами на ділянку зі зниженим коефіцієнтом зчеплення. Спираючись на отримані залежності, було запропоновано метод розпізнавання переходу електромобіля у режим буксування з використанням неузгодженності швидкостей. Підібрано найбільш відповідні коефіцієнти неузгодженості і на їх основі побудована структура регулятора з нечіткою логікою. Запропоновано функціональну схему для визначення і запобігання переходу в режим буксування. Наукова новизна роботи полягає в наступному. - Удосконалено та перевірено методику розробки ЕП ЕМБ, яка може бути використана при розробці нових електромобілів і переобладнанні серійних автомобілів в електромобілі; - Вперше розроблено та досліджено загальну математичну модель електромобіля з асинхронним електроприводом, що включає до себе розгорнуту модель системи живлення, електромеханічної частини з системою прямого керування моментом з урахуванням рекуперації та модель механічної частини електромобіля з можливістю моделювання режиму буксування; - Синтезована система розпізнавання та запобігання буксування коліс шляхом з використанням нечіткої логіки засобами електроприводу з використанням вперше запропонованого способу раннього розпізнавання переходу електромобіля в режим буксування.Документ Визначення умов виникнення високовольтних розрядів у системах складних просторових конфігурацій(Національний технічний університет "Харківський політехнічний інститут", 2021) Литвиненко, Світлана АнатоліївнаДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 141 – Електроенергетика, електротехніка та електромеханіка (галузь знань 14 – Електрична інженерія). Національний технічний університет "Харківський політехнічний інститут", МОН України, Харків 2021. Об’єкт дослідження: електрофізичні процеси при високовольтних розрядах. Предмет дослідження: математичні та фізичні моделі електрофізичних процесів при високовольтних розрядах. Дисертація присвячена вирішенню наукової задачі визначення умов виникнення високовольтних розрядів у системах складних просторових конфігурацій шляхом застосування науково обґрунтованих методів математичного та фізичного моделювання електрофізичних процесів при розрядах в повітряних проміжках. Дисертація виконана з застосуванням фундаментальних положень теорії електромагнітного поля, математичної фізики, теоретичної електротехніки. При розробці моделей для опису електричного поля у розглядуваних системах використовувалися аналітичні методи, а також числовий метод скінченних об’ємів. Коректність використаних методів, збіг експериментальних та теоретичних результатів, а також збіг аналітичних та числових розрахунків, використання розробок у навчальному процесі та наукових дослідженнях за тематикою університету свідчать про достовірність виконаних досліджень. У вступі представлені актуальність теми дисертації, задачі дослідження, показаний зв’язок роботи з науковими програмами, планами, темами, описані методи дослідження та наведена інформація про наукову новизну здобутих результатів та їхнє практичне значення. В першому розділі наведений аналіз наявних даних щодо електрофізичних процесів, які супроводжують високовольтні розряди у повітрі, методів їхнього дослідження та моделювання, як фізичного, так і математичного. В другому розділі представлені математичні моделі електричного поля в системах з електропровідними стрижнями, висота яких на декілька порядків перевищує їхній діаметр. При аналітичних розрахунках електричного поля (ЕП) заземлений стрижень був представлений у вигляді видовженого електропровідного еліпсоїда. Розраховані розподіли напруженості електричного поля в системах з розглянутими видовженими сфероїдами, розташованими в зоні дії ЕП, показали суттєву залежність напруженості ЕП, а отже, й умов утворення висхідних розрядів, від висоти об’єктів і значно меншу залежність від діаметра їхньої бази. Розроблений числовий метод розрахунку базується на методі скінченних об’ємів, при використанні якого досліджувана область поділена на елементарні комірки, що мають форму паралелепіпеда. Стрижень при цьому представлений рядом вузлів, розташованих на його осі. Нелінійний закон зміни напруженості та потенціалу в радіальному напрямку від осі стрижня та наявність електропровідності вздовж стрижня враховані за допомогою тензору діелектричної проникності. Для зменшення розмірів розрахункової системи, що належить до систем з відкритими границями, застосовані одновісне добре узгоджені шари (UPML). Адекватність розрахунку розподілу ЕП видовженого стрижня розробленим числовим методом підтверджується добрим збігом результатів розрахунків з результатами аналітичного розрахунку для випадку представлення електропровідного стрижня видовженим сфероїдом. В третьому розділі досліджені фактори, які впливають на виникнення коронного розряду. Встановлено, що для поглибленого аналізу процесів, які викликають коронний розряд, необхідно розробити методи оцінки та засоби реєстрації струму корони за умови прикладення ЕП з різними характеристиками в системі площина-стрижень при використанні стрижнів, які мають різні геометричні параметри. Розроблено фізичну модель для реєстрації коронних розрядів за умови прикладення електричного поля до стрижневих електродів, з яких розвиваються такі розряди, та проведені відповідні експериментальні та теоретичні дослідження. Для цього використаний випробувальний стенд, що складається з потенціальної та заземленої поверхонь, та встановленого на заземленій поверхні стрижня. Для вимірювання струму корони використана схема, яка дозволяє обчислити кількість імпульсів струму корони за проміжок 10 мс. Фізичне моделювання процесів виникнення коронного розряду від електродів різної геометрії проводилось для трьох випадків дії ЕП в проміжку: в першому випадку до потенціальної поверхні прикладена постійна напруга позитивної полярності до 170 кВ, в другому – напруга негативної полярності до 170 кВ, в третьому – змінна напруга промислової частоти з діючим значенням 100 кВ. Виконана оцінка інтенсивності коронних розрядів в залежності від об’єму зон в околі верхівок, від яких розвиваються коронні розряди. Розроблено методику визначення розрахунковим шляхом наявності чи відсутності між високовольтним та заземленим електродами зон, в яких напруженість електричного поля не менша за достатню для розвитку стримерного каналу (2 кВ/см) з метою прогнозування ймовірності влучення високовольтного розряду. Встановлено, що інтенсивність корони, яка характеризується її виміряним струмом, залежить від об’єму зон, у яких напруженість ЕП перевищує критичний рівень пробою у слабко-неоднорідних полях (30 кВ/см). В четвертому розділі наведені приклади застосування методів математичного моделювання електричного поля при розрядах в складних системах з великими повітряними проміжками. За використання статистичної моделі процесу просування лідерного каналу блискавки до землі на останньому етапі, в якій враховані всі можливі зони появи лідерного каналу блискавки від грозової хмари, вплив розвитку коронних розрядів та зустрічного висхідного лідера від заземлених об’єктів та блискавкоприймачів, залежність швидкості руху стримерів у лідерній зоні блискавки від напруженості електричного поля, розподіл імовірностей появи блискавок з певним потенціалом, продемонстровано ефективність такого підходу при визначенні параметрів засобів блискавкозахисту підвищеної надійності. Проведено також моделювання розподілу електричного поля в околі високовольтних ліній електропередачі (ЛЕП-220) за умови різного розташування струмопроводів та з урахуванням змінення напруженості ЕП внаслідок наявності опор ЛЕП. Це дає можливість визначити умови виникнення небажаних коронних розрядів від елементів ЛЕП та обрати ефективні засоби їх блискавкозахисту. Був проведений також розрахунок тривимірного електричного поля в системах масивів вуглецевих нанотрубок (ВНТ), які представляють собою електропровідні стрижні зі співвідношенням висоти до радіусу 100 та більше. Це дозволило визначити співвідношення між щільністю елементів масиву ВНТ та їхньою висотою, які забезпечують максимальну напруженість ЕП в околі верхівок ВНТ при прикладенні електричного поля, та отримання більших струмів. Таким чином, в ході проведеного дослідження показано, що врахування нелінійного закону зміни потенціалу і напруженості EП в радіальних напрямках від осі стрижня і над його вершиною дає достатню точність розрахунку розподілу напруженості ЕП (відносна похибка менша за 3 %) при використанні досить великого кроку розрахункової сітки, пропорційного висоті стрижня, а не його діаметру. Такий підхід дає можливість розраховувати ЕП в околі розглянутих довгих і тонких електропровідних стрижнів, що дозволяє моделювати умови локального збільшення напруженості ЕП в околі верхівок та, за необхідності, вживати заходів для уникнення небажаних розрядів (наприклад від об’єктів, що захищаються, та ЛЕП), або для сприяння процесам виникнення таких розрядів (наприклад, від верхівок блискавкоприймачів для притягання лідера блискавки та від верхівок елементів масиву вуглецевих нанотрубок для збільшення емісійного струму). Розроблені методи фізичного та математичного моделювання передпробійних та пробійних процесів при прикладенні високої напруги можуть бути використані для створення нового покоління більш надійних та економічних засобів захисту від дії електромагнітних завад природного та штучного походження, в тому числі таких об’єктів, як атомні та теплові електростанції, об’єкти авіаційної та аерокосмічної техніки тощо. В ході проведення досліджень було отримано ряд наукових результатів: – вперше розроблена методика розрахунку розподілу електричного поля у системах зі стрижневими електродами, висота яких на декілька порядків перевищує їхній діаметр, в якій нелінійний характер спадання потенціалу та напруженості в безпосередній близькості від стрижня враховується за допомогою аналітичних виразів для ЕП видовженого провідного сфероїда під напругою, що дозволяє обрати крок за простором пропорційним довжині стрижня, а не його діаметру та зменшити на декілька порядків кількість рівнянь, що розв’язуються; – вперше за допомогою математичного та фізичного моделювання утворення корони на заземлених стрижневих електродах з різними радіусами округлення вершин розроблено метод визначення інтенсивності корони як залежність її струму від Vcor – об’єму області, де напруженість ЕП перевищує критичний пробивний рівень 30 кВ/см, що дозволяє прогнозувати рівні струмів корони в залежності від Vcor та максимальної напруженості ЕП; – за допомогою експериментальних досліджень та числового моделювання вдосконалена модель для визначення критерію початку процесів коронування від заземлених стрижневих електродів як функція радіуса кривизни їхніх верхівок, їхньої висоти та рівня напруженості прикладеного електричного поля. Достовірність теоретичних результатів, представлених в дисертації, підтверджується збігом отриманих експериментальних даних з вимірювання струму корони та розвитку коронних розрядів за допомогою експериментального стенду з результатами математичного моделювання відповідних електрофізичних процесів, а також збігом результатів числових та аналітичних розрахунків. Результати досліджень використано в НТУ "ХПІ" при виконанні науково-дослідних робіт на кафедрі теоретичних основ електротехніки та в учбовому процесі.Документ Вплив конструктивних та технологічних факторів на електричні характеристики високовольтної композитної електроізоляційної системи електричних машин(Національний технічний університет "Харківський політехнічний інститут", 2021) Рогинський, Олександр ВолодимировичДисертація на здобуття наукового ступеня доктора філософії (PhD) за спеціальністю 141 "Електроенергетика, електротехніка та електромеханіка" (14 – Електрична інженерія) – Національний технічний університет “Харківський політехнічний інститут”, м. Харків, 2020 р. Дисертаційна робота присвячена вирішенню актуальної науково-прикладної задачі щодо впровадження сучасних високовольтних електроізоляційних композитних систем з адаптованою технологією та сучасними системами моніторингу на технологічній стадії для забезпечення комплексу енергетичних характеристик електричних машин. Об’єктом дослідження є процес впливу конструкторських та технологічних факторів, що визначають електричні характеристики високовольтних композитних електроізоляційних систем електричних машин. Предметом дослідження є електричні характеристики високовольтної композитної електроізоляційної системи, що забезпечують підвищення енергетичних характеристик електричних машин. У вступі акцентовано увагу та обґрунтовано актуальність теми, що досліджується, показано зв‟язок роботи з науковими програмами, планами та темами, наведено наукову новизну, а також, сформульовано практичне значення отриманих результатів. В першому розділі проведено аналітичний огляд сучасного стану та вимог до характеристик електричної ізоляції високовольтних електричних машин. Розглянуто сучасні електроізоляційні системи корпусної термореактивної ізоляції на основі попередньо просочених склослюдінітових стрічок або не просочених з вакуум-нагнітальним просоченням в епоксидному компаунді. Показано, що забезпечення надійності і довговічності електричних машин високої напруги пов‟язано з необхідністю зменшення ступеня неоднорідності електричного поля, в котрому знаходиться корпусна ізоляція обмотки статора (стрижня або котушки). Наведено конструктивні рішення, які забезпечують зменшення неоднорідності електричного поля в пазової та лобової частинах обмоток. Сформульовано основні напрямки та визначено основні задачі дисертаційних досліджень. У другому розділі вперше показано вплив електрофізичних характеристик та товщини слюдинітового діелектричного бар'єру на розподіл електричного поля в високовольтної композитної ізоляції на основі попередньо просочених склослюдинітових стрічок, що ґрунтується на моделі накопичення поверхневого заряду на границі розділу діелектричного бар'єру та підкладки на основі склотканини з просочувальним складом. Вперше експериментально доведено ефект впливу товщини діелектричного бар‟єру на короткочасну електричну міцність макетів термореактивної ізоляції на основі склослюдинітових стрічок. Доведено, що макети зі стрічками з підвищеним вмістом слюдинітового бар'єру і склотканиною меншої товщини мають на (8-16)% вищі значення короткочасної електричної міцності. Розроблена методика розрахунку розподілу електричного поля по поверхні ізоляції уздовж лобової частини стрижнів високовольтної електричної машини дозволяє визначити верхню границю питомого поверхневого опору напівпровідного покриття для плавного розподілу електричного потенціалу по поверхні ізоляції, що забезпечує відсутність поверхневих розрядів. Достовірність чисельних розрахунків доведено експериментальними дослідженнями розподілу потенціалу по поверхні напівпровідного нелінійного покриття уздовж лобової частини зразків стрижнів гідрогенератора на лінійну напругу 10,5 кВ. Експериментально підтверджена стабільність нелінійних властивостей покриттів в процесі тривалого електричного і теплового старіння спеціально виготовлених зразків, а також зразків стрижнів гідрогенератора в початковому стані і після комплексного впливу електричного поля напругою 26,25 кВ промислової частоти і температури 120оС протягом 260 годин. В третьому розділі розглянуто найбільш типові види технологічних дефектів при виготовленні композитної електроізоляційної системи та проаналізовано чутливість часового тренду опору ізоляції до визначення технологічних дефектів у високовольтної корпусної ізоляції додаткових полюсів магнітної системи тягового електродвигуна постійного струму. Підтверджено ефективність реєстрації часткових розрядів у композитної корпусної ізоляції обмотки статора турбо- і гідрогенераторів для виявлення технологічних дефектів на стадії виготовлення електроізоляційних конструкцій та налаштування технологічного процесу. На підставі моделювання частотних залежностей сукупних діелектричних характеристик на основі схеми заміщення обмоток статора при з'єднанні «зіркою» асинхронних електричних машин встановлено дві резонансні частоти. Достовірність результатів чисельного розрахунку сукупних діелектричних параметрів корпусної електроізоляційної системи трьох фаз підтверджено експериментальними дослідженнями зразків високовольтних асинхронних тягових двигунів. Вперше обґрунтовано ефективність виявлення технологічних дефектів за тангенсом кута діелектричних втрат на резонансній частоті для оцінки стану композитної термореактивної електроізоляційної системи. Показано доцільність застосування комплексних діагностичних обстежень для виявлення дефектів на технологічній стадії виготовлення і в експлуатації електричних машин на підставі аналізу характеристик корпусної електроізоляційної системи в режимі вимірювань сукупних діелектричних параметрів та індуктивності й добротності на резонансній частоті зразків електричного двигуна. У четвертому розділі вперше обґрунтовано застосування опору ізоляції в якості інтегрального параметру стабільності технологічного процесу виготовлення високовольтних електроізоляційних систем для запобігання появи дефектів в електричних машинах. Показана ефективність статистичного регулювання та розроблено методику контролю технологічного процесу виготовлення електроізоляційної системи, що базується на побудові і аналізі спеціальних графіків індивідуальних значень і кумулятивних сум опору ізоляції. Наведено аналіз стабільності технологічного процесу для трьох варіантів корпусної ізоляції магнітної системи тягового електродвигуна постійного струму. Доведено, що контрольні карти кумулятивних сум є більш чутливими до варіабельності технологічного процесу виготовлення високовольтних електроізоляційних систем при обмежених обсягах значень опору ізоляції. Вперше обґрунтовано використання контрольних карт кумулятивних сум опору ізоляції для аналізу стабільності технологічного процесу виготовлення електроізоляційних систем, що дозволяє визначити ранні розлади в технологічному процесі виготовлення електричних машин.Документ Удосконалення проєктного аналізу електромагнітних параметрів та характеристик індукторів обертового магнітного поля для технологічної обробки різних речовин(Національний технічний університет "Харківський політехнічний інститут", 2020) Шилкова, Лариса ВасилівнаДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 141 – Електроенергетика, електротехніка та електромеханіка. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2020. Об'єктом дослідження є індуктори обертового магнітного поля для технологічної обробки різних речовин. Предметом дослідження є електромагнітні параметри та характеристики індукторів обертового магнітного поля. Дисертація присвячена вирішенню актуального наукового завдання з удосконалення проєктного аналізу електромагнітних параметрів в режимі неробочого ходу і характеристик індукторів обертового магнітного поля для технологічної обробки різних речовин в режимі навантаження за наявністю феромагнітних елементів, що обертаються в його робочій камері, на основі чисельно-польових розрахунків. У вступі обґрунтовано актуальність задач дослідження, показано зв'язок роботи з науковими програмами, планами, темами, наведена наукова новизна та сформульоване практичне значення отриманих результатів. В першому розділі установлено, що існуючі методи проєктування індукторів обертового магнітного поля на базі статора трифазного асинхронного двигуна базуються на розрахунках магнітного поля в режимі ідеального неробочого хода і не використовують чисельних методів, які, як представлено в дисертації, дозволяють розраховувати характеристики індуктора в режимі навантаження за наявності феромагнітних елементів в його робочій камері, і дають істотний прогрес в можливостях проєктування та вдосконаленні їхньої конструкції. У другому розділі показано, що застосування квазі-тривимірної математичної моделі індуктора, заснованої на методі плоско-ортогональних розрахункових моделей, що поєднують магнітні поля поперечного та поздовжнього перерізів індуктора, дозволяє проаналізувати розподіли магнітної індукції у його поперечному і поздовжньому перерізах та проявити у достатньо повній мірі його тривимірний характер. Представлена методика на основі чисельно-польових розрахунків магнітного поля для проведення аналізу впливу скорочення обмотки статора індуктора на його електромагнітні параметри. Запропонована методика розрахунку потужності магнітних втрат на основі середньоквадратичного значення максимумів модуля магнітної індукції, яка виявилась універсальною з точки зору різних геометричних форм зубцево-пазової структури і ярма осердя статора, оскільки не вимагає спрощень геометрії розрахункових моделей цих частин конструкції. В третьому розділі вперше визначено, що кут навантаження індуктора відповідає куту повороту магнітного поля, але виявляється в два рази меншим, ніж кут фази струмів обмотки індуктора. Період моментної кутової характеристики виявляється в два рази меншим періоду струмів обмотки індуктора, що відповідає класичним уявленням про кутові функції реактивного моменту електричних машин. Це дозволяє віднести розглянутий індуктор, разом з анізотропним магнітним середовищем в робочій камері, до класу реактивних синхронних машин, а конкретно – двигунів. Запропоновано метод врахування магнітної анізотропії робочої камери індуктора залежно від концентрації феромагнітних елементів в ній. Це дозволило отримати математичну модель для визначення кількісних і фазових співвідношень його електромагнітних величин в режимі навантаження: магнітної індукції, магнітного потокозчеплення, ЕРС, струму, напруги обмотки статора, а також електромагнітний момент в його робочій камері. Представлена методика на основі чисельних розрахунків магнітних полів, яка дозволяє організувати ітераційний процес для розрахункового аналізу характеристик індуктора, що працює зі змінною навантаження при стабільному струмі або напрузі живлення його обмотки. Тестовими розрахунками виявлено, що на ділянці сталої роботи в енергетичному відношенні індуктор характеризується досить високим ККД і вельми низьким значенням коефіцієнта потужності. При порівнянні кутових характеристик індуктора виявлено, що більш раціональним для експлуатації індуктора є режим при стабілізації напруги, який в бажаному робочому діапазоні кута навантаження до 25° забезпечує кращі його електричні, магнітні, силові і енергетичні параметри. Запропонований струмовий метод контролю концентрації феромагнітних елементів у робочій камері індуктора в процесі його експлуатації. Практичні розрахунки показали, що такий метод є більш чутливим і не вимагає ускладнення конструкції індуктора у порівнянні з альтернативним методом контролю за допомогою вимірювальних витків. Спостереження за струмом обмотки індуктора дозволяє контролювати заповнення його робочої камери феромагнітними елементами, не перериваючи процесу експлуатації. Це дає можливість своєчасно поповнювати камеру такими елементами і, тим самим, підтримувати на заданому рівні технологічну обробку різних речовин, що пропускаються через цю камеру. У четвертому розділі представлені експериментальні дослідження фізичної моделі індуктора, які підтвердили результати математичного моделювання електромагнітних процесів індуктора в режимі неробочого ходу і в його робочому режимі.Документ Підвищення експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та радіаційного опромінення електричної ізоляції(Національний технічний університет "Харківський політехнічний інститут", 2020) Мірчук, Ігор АнатолійовичДисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 141 "Електроенергетика, електротехніка та електромеханіка" (14 – Електрична інженерія) – Національний технічний університет "Харківський політехнічний інститут", м. Харків, 2020 р. Дисертаційна робота присвячена підвищенню експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та радіаційного опромінення ізоляції і оболонки на основі сучасних, які не поширюють полум'я, безгалогенних полімерних композицій, що забезпечують необхідний комплекс електричних, фізико-механічних параметрів при відповідному контролі технологічних процесів. Для досягнення цієї мети були поставлені задачі: – довести доцільність поступового охолодження поліетиленової ізоляції високовольтних силових кабелів для забезпечення як експлуатаційних параметрів, так і стабільності характеристик в процесі експлуатації; – обґрунтувати застосування методу електротеплової аналогії для побудови математичної моделі охолодження ізольованої струмопровідної жили з урахуванням розподілу температури по товщині ізоляції в несталому тепловому режимі; – розробити методику розрахунку технологічних параметрів режиму охолодження силових кабелів, що ґрунтується на розрахунку нелінійної теплової схеми заміщення ізольованої струмопровідної жили в несталому тепловому режимі з урахуванням залежності від температури теплового опору і теплоємності ізоляції методами дискретних резистивних схем заміщення і вузлових потенціалів; – визначити вплив технологічних режимів охолодження на розподіл температури по товщині екструдованої ізоляції та обґрунтувати тривалість перехідного процесу, що відповідає досягненню однакової температури по всій товщині ізоляції силових кабелів різного конструктивного виконання в різні моменти часу в залежності від температури води, що охолоджує; – експериментально перевірити ефективність виявлення технологічних дефектів в конструкції силового суднового кабелю за характеристиками часткових розрядів; – створити методику оптимізації силового суднового кабелю коаксіальної конструкції для забезпечення максимального розсіювання потужності теплового потоку в навколишнє середовище, що обумовлює збільшення струмового навантаження, за умови теплової стійкості ізоляції; – довести ефективність застосування захисної полімерної оболонки з високими теплопровідними властивостями для підвищення струмового навантаження силових суднових кабелів; – визначити вплив енергії прискорених електронів на механічні та електричні характеристики суднових кабелів та встановити діапазон коефіцієнта опромінення ізоляції, що забезпечує підвищення експлуатаційних характеристик, на підставі кореляційного зв'язку між електричними та механічними характеристиками радіаційно-модифікованої високонаповненої антипіренами безгалогенної композиції на основі співполімеру етилен-вінілацетату; – перевірити ефективність розподілу поглиненої дози по периметру й довжині при радіаційному опроміненні суднових кабелів за результатами фізико-механічних та теплових випробувань безгалогенної, яка не поширює полум'я, полімерної захисної оболонки кабелю; – визначити на підставі прискореного теплового старіння теплову стійкість радіаційно-модифікованої безгалогенної, яка не поширює полум'я, полімерної захисної оболонки, для прогнозування строку служби суднових кабелів та обґрунтувати можливість роботи в умовах підвищеної вологості і високих робочих температур неекранованого кабелю на основі неекранованих кручених пар з термопластичними ізоляцією і захисною оболонкою. Об'єкт дослідження – технологічні режими охолодження та радіаційного опромінення електричної ізоляції суднових кабелів, виготовленої з наповненої антипіренами безгалогенної композиції на основі поліолефінів. Предмет дослідження – експлуатаційні електричні, фізико-механічні та теплові характеристики полімерної ізоляції і оболонки, на основі наповненої антипіренами безгалогенної композиції, суднових кабелів. Методи дослідження. Теоретичні та експериментальні дослідження базуються на використанні методів чисельного та фізичного моделювання технологічних режимів охолодження та радіаційного опромінення прискореними електронами електричної полімерної ізоляції та захисної оболонки суднових кабелів. Методи теорії нестаціонарної теплопровідності для розрахунку режиму охолодження полімерної ізоляції кабелю. Диференційні рівняння теплопровідності та електропровідності. Метод електротеплових аналогій для визначення розподілу температури по товщині ізоляції в різні моменти часу, в залежності від температури води, що охолоджує судновий силовий кабель. Нелінійні теплова та електрична схеми заміщення ізольованої струмопровідної жили в перехідному тепловому режимі. Неявний метод Ейлера та метод вузлових потенціалів для отримання розподілу температури по товщині ізоляції кабелю. Метод оптимізації конструкції силового кабелю за умови забезпечення охолодження в експлуатації для підвищення струмового навантаження. Рівняння теплового балансу для визначення теплової стійкості ізоляції в експлуатації. Теорія радіаційного зшивання для визначення оптимальної дози опромінення полімерної ізоляції. Теорія теплового старіння ізоляції для прогнозування строку служби суднових кабелів в експлуатації. Апроксимація експериментальних електричних, фізико-механічних й теплових характеристик радіаційно-модифікованої ізоляції суднових кабелів. Кореляційний та регресійний аналіз електричних, механічних й теплових характеристик в процесі радіаційного модифікування полімерної ізоляції та захисної оболонки суднових кабелів. Техніка реєстрації часткових розрядів у високовольтній твердій полімерній ізоляції для виявлення дефектів на технологічній стадії виготовлення силових суднових кабелів. В роботі отримані такі наукові результати. У дисертаційній роботі вирішено науково-практичну задачу з підвищення експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та опромінення електричної ізоляції на основі сучасних безгалогенних полімерних композицій, які не поширюють полум'я. Удосконалено математичну модель технологічного процесу охолодження ізольованої струмопровідної жили в несталому тепловому режимі шляхом урахування температурної залежності теплофізичних характеристик полімерної ізоляції підчас розрахунку розподілу температури по товщині поліетиленової ізоляції в різні моменти часу в залежності від температури води при поступовому охолодженні, що дозволило визначити умови для забезпечення стабільних характеристик суднового силового кабелю в експлуатації. Запропоновано критерій для визначення технологічних параметрів режиму охолодження силових суднових кабелів, який являє собою час перехідного процесу охолодження ізольованої струмопровідної жили для досягнення однакової температури по всій товщині полімерної ізоляції. Встановлено оптимальну товщину полімерної захисної оболонки за умови довготривалої теплової стійкості радіаційно-зшитої ізоляції на основі поліолефінів, що забезпечує підвищення на 30 % струмове навантаження силового суднового кабелю коаксіальної конструкції. Визначено діапазон коефіцієнта опромінення прискореними електронами безгалогенної, що не поширює полум'я ізоляції суднових кабелів, що гарантує підвищення електричного опору радіаційно-модифікованої полімерної ізоляції більш ніж в два рази, пробивної напруги на постійному струмі в 1,3 рази відносно неопроміненого стану. Встановлено кореляцію між механічними і електричними характеристиками радіаційно-модифікованої ізоляції з безгалогенної композиції на основі поліолефінів, в залежності від лінійної швидкості проходження кабелю під пучком електронів при незмінному струмі пучка електронів. Встановлено, в залежності від технологічних параметрів режиму опромінення суднових кабелів, розподіл поглиненої дози по периметру і довжині полімерної захисної оболонки з безгалогенної композиції, яка не поширює полум'я, що дозволяє визначити дозу опромінення кабелів, яка забезпечує підвищення стійкості захисної оболонки до дії агресивних хімічних речовин при збереженні високих фізико-механічних характеристик Експериментально, на підставі прискореного старіння неекранованого кабелю на основі неекранованих кручених пар, з термопластичної поліетиленової ізоляції в захисній оболонці на основі полівінілхлоридного пластикату за умови адекватного старіння в експлуатації, доведено стійкість конструкції до підвищеної температури та вологості, що дозволяє прогнозувати строк служби суднових кабелів в залежності від робочої температури. Розроблено методику розрахунку технологічних параметрів режиму охолодження силових кабелів, що ґрунтується на розрахунку нелінійної теплової схеми заміщення ізольованої поліетиленом струмопровідної жили в несталому тепловому режимі, з урахуванням залежності від температури теплового опору і теплоємності, методами дискретних резистивних схем заміщення і вузлових потенціалів. Запропонована методика та алгоритми можуть бути застосовані для визначення технологічних режимів охолодження полімерної ізоляції кабелів без застосування дороговартісних натурних експериментів, що особливо важливо при освоєнні нових матеріалів та конструкцій, а також при модернізації існуючого на кабельних підприємствах обладнання, для охолодження силових, симетричних, радіочастотних та оптичних кабелів. Доведено ефективність реєстрації часткових розрядів у високовольтній твердій ізоляції для виявлення дефектів на технологічній стадії виготовлення силових суднових кабелів, а також для налаштування технологічного процесу охолодження. Розроблено методику розрахунку теплопередачі в одножильному силовому кабелі коаксіальної конструкції на підставі критеріальних рівнянь природної конвекції, для оптимізації конструкції силового суднового кабелю, для забезпечення максимальної лінійної щільності теплового потоку, що розсіюється з поверхні кабелю. Показано ефективність застосування полімерних матеріалів на основі мікро- і нанокомпозитів з високими теплопровідними властивостями для захисної оболонки силових високовольтних суднових кабелів, що забезпечують збільшення розсіювання кабелем теплової потужності на 30 %. Встановлено, що енергія прискорених електронів на рівні 0,5 МеВ забезпечує більш високий ступінь зшивання полімерної безгалогенної ізоляції на основі високонаповненої антипіренами композиції в порівнянні з енергією 0,4 МеВ при однаковому коефіцієнті опромінення, струмі пучка і кількості проходів ізольованої жили під пучком електронів. Доведено підвищення механічної міцності при розтягуванні, електричного опору ізоляції та пробивної напруги на постійному струмі радіаційно-модифікованої полімерної безгалогенної ізоляції з коефіцієнтом опромінення 5–7 м/(мА∙хв) при сталому значенні відносного подовження при розриві ізоляції на рівні не менше 120 %, що забезпечує компроміс між еластичністю і жорсткістю суднового кабелю. Встановлено зростання в 1,5–2 рази часу досягнення критичного параметра – відносного подовження при розриві радіаційно-модифікованої полімерної захисної оболонки на основі безгалогенної композиції, в порівнянні з не модифікованою термопластичною оболонкою, що еквівалентно збільшенню строку експлуатації в 1,5–2 рази суднового контрольного кабелю в області максимальних робочих температур. Матеріали дисертаційної роботи використовуються в навчальному процесі на кафедрі електроізоляційної та кабельної техніки Національного технічного університету "Харківський політехнічний інститут" при підготовці бакалаврів та магістрів за спеціальністю "141 – електроенергетика, електротехніка та електромеханіка" спеціалізації "141.04 Електроізоляційна, кабельна та оптоволоконна техніка"; у ТОВ "Азовська кабельна компанія" (м. Бердянськ) при розробці і визначенні оптимальних технологічних параметрів режимів виготовлення безгалогенних суднових кабелів, що не розповсюджують горіння, асоціації "Укрелектрокабель", в ПАТ "Завод "Південкабель". Дисертаційна робота виконана в ПрАТ "Український науково-дослідний інститут кабельної промисловості" (м. Бердянськ) та на кафедрі електроізоляційної та кабельної техніки Національного технічного університету "Харківський політехнічний інститут" (м. Харків), згідно програм наукових досліджень ПрАТ "Український науково-дослідний інститут кабельної промисловості" (ПМ ЕИЮВ.505.564–2018 "Вивчення термічної стійкості оболонки кабелю марки СПОВЕнг-FRHF 12x2,5 до та після опромінення швидкими електронами", ПМ ЕИЮВ.505.584–2019 "Визначення величини та розподілу поглиненої дози при радіаційному модифікуванні оболонки суднових кабелів, що не розповсюджують полум'я"), де здобувач був одним з розробників і виконавців програм.Документ Визначення профілю соленоїдів для створення імпульсних магнітних полів за допомогою аналітичних розв'язків задач аналізу(Національний технічний університет "Харківський політехнічний інститут", 2020) Петренко, Микита ПавловичДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 141 – Електроенергетика, електротехніка та електромеханіка (14 – Електрична інженерія). – Національний технічний університет "Харківський політехнічний інститут" Міністерства освіти і науки України, Харків, 2020. Об’єктом дослідження є імпульсне магнітне поле, що утворюється масивними одновитковими соленоїдами при магнітно-імпульсній обробці металевих заготовок. Предметом дослідження є профілі масивних одновиткових соленоїдів, що забезпечують заданий розподіл імпульсного магнітного поля на поверхні оброблюваної металевої заготовки. В дисертаційній роботі вирішена науково-практична задача визначення профілів масивних одновиткових соленоїдів за допомогою аналітичних розв’язків задач аналізу імпульсного магнітного поля, що утворюється джерелами елементарної форми. Дослідження виконано за допомогою фундаментальних положень теоретичної електротехніки, математичної фізики, чисельних методів аналізу та сучасних інформаційних технологій. У вступі обґрунтовано актуальність теми дисертації, визначені задачі дослідження, показано зв’язок роботи з науковими програмами, планами, темами, наведено дані про наукову новизну, практичне значення, апробацію результатів та публікації. У першому розділі проведено огляд конструкцій полеутворюючих систем для магнітно-імпульсної обробки металів та аналіз відомих методів визначення їх форми. Детально розглядаються два підходи до вирішення цієї задачі. Перший базується на ітеративному або аналітичному підборі параметрів полеутворюючої системи, другий – на вирішенні задачі продовження поля з граничної поверхні. Обґрунтовано необхідність розвитку методів, заснованих на використанні аналітичних розв’язків задач аналізу для джерел елементарної форми, обрано напрями досліджень, поставлені основні задачі дисертаційної роботи. У другому розділі запропоновано метод визначення форми масивних одновиткових соленоїдів для створення заданого розподілу азимутальної складової індукції магнітного поля на поверхні циліндричної та плоскої заготовки, що засновується на використанні систем елементарних джерел зі струмами, котрі розташовані поблизу цих поверхонь. При цьому середовище поза провідниками вважається непровідним і немагнітним, а заготовка замінюється ідеальним надпровідником: нескінченно довгим циліндром або півпростором. Розглядаються три випадки. У першому елементарні джерела – це кільця зі струмами нескінченно малого перетину, що розташовуються співвісно внутрішньому циліндру, у другому – такі ж співвісні кільця, але розташовані паралельно плоскій границі нижнього півпростору, у третьому – осі зі струмами, розташовані паралельно нижньому півпростору. Наведено формули для розрахунку індукції магнітного поля та магнітного потоку, що створюються такими джерелами. Варіацією геометричними параметрами елементарних джерел та струмами, що в них протікають досягнуто відповідності утвореного поверхневого розподілу індукції та заданого. Для підбору оптимальних параметрів системи застосовано метод градієнтного спуску. Для визначення шуканого контуру профілю масивного соленоїда побудовано силові лінії магнітного поля систем елементарних джерел, що забезпечують найменшу похибку відтворення заданого розподілу. Правильність визначення точного контуру профіля соленоїда підтверджується за допомогою методу інтегральних рівнянь. У третьому розділі запропоновано апроксимацію точного контуру профілю масивного одновиткового соленоїда багатокутником, що дозволило значно спростити його проєктування і виготовлення. Досліджено розподіли індукції магнітного поля та їх розбіжності із заданим для соленоїдів точного та апроксимованих профілів. Розраховано та порівняно індуктивність системи соленоїд – циліндр. Детально розглянуто розподіли поверхневої густини струму на крайках апроксимованих соленоїдів і визначено вплив радіуса скруглення та величини кута, що скруглюється, на її максимальні значення. Розрахунки третього розділу виконано за допомогою чисельного розв’язання інтегрального рівняння відносно поверхневої густини струму. У четвертому розділі експериментально досліджено розподіли індукції плоскомеридіанного магнітного поля, що створюється масивним одновитковим соленоїдом поблизу циліндричної поверхні заготовки. Для цього із латуні було виготовлено соленоїд, контур профілю котрого отримали за допомогою методу, який запропоновано в дисертації. Точний контур профіля масивного соленоїда, котрий отримали за допомогою системи дев’яти елементарних кільцевих джерел, було апроксимовано шестикутником. Соленоїд розміщувався на спеціальному стенді співвісно з мідною оболонкою, яка імітувала заготовку. У проміжку між соленоїдом та оболонкою розташовувався індукційний перетворювач, за допомогою якого вимірювали відносну індукцію в контрольних точках поблизу поверхні оболонки. Через соленоїд пропускали імпульси струму від низьковольтного генератора, котрі мали форму експоненційно згасаючою синусоїди. Частота імпульсів змінювалась в діапазоні (40÷225) кГц зміною ємності батареї конденсаторів в генераторі. Наведено відносні розбіжності між виміряними та заданими розподілами, які при всіх варіантах імпульсу не перевищують 6 відсотків по всій довжині оброблюваної поверхні. Результати досліджень дозволили отримати низку наукових результатів: - уперше для визначення форми одновиткового масивного соленоїда, що забезпечує заданий розподіл імпульсного магнітного поля на циліндричній поверхні металевої заготовки при магнітно-імпульсній обробці, застосовано функцію Гріна; - уперше запропоновано апроксимацію складного криволінійного контуру профілю масивного соленоїда контуром багатокутника, що дозволило суттєво спростити його проєктування та виготовлення; - отримало подальший розвиток застосування функцій Гріна для визначення профілів масивних соленоїдів, що забезпечують заданий розподіл плоскомеридіанного та плоскопаралельного магнітного поля на плоскій поверхні металевої заготовки; - достовірність теоретичних результатів, отриманих у дисертації, підтверджено вимірюваннями відносних розподілів індукції магнітного поля, що створюється масивним соленоїдом, поблизу поверхні циліндричної заготовки на стенді для фізичного моделювання; - Результати досліджень використано в НТУ "ХПІ" при виконанні науково-дослідних робіт на кафедрі інженерної електрофізики.