Вісник № 1-2. Математичне моделювання в техніці та технологіях
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/55966
Переглянути
Документ Умови монотонної апроксимації кривих Рамсея та їх модифікацій(Національний технічний університет "Харківський політехнічний інститут", 2021) Курносенко, Дар'я Вікторівна; Савчук, Володимир Петрович; Тулученко, Галина ЯківнаРозроблено алгоритм апроксимації експериментальних даних кривою Рамсея та її модифікаціями, який забезпечує монотонне зростання наближаючої функції на проміжку [0; + ∞) та існування заданої кількості точок перегину. Крива Рамсея належить до сім’ї логістичних кривих, які широко використовуються при моделюванні процесів обмеженого росту в різних предметних галузях. Класична крива Рамсея має два параметри та володіє лівою фіксованою асиметрією. Відома також її трьохпараметрична модифікація,яка забезпечує можливість зміщення по осі ординат. Широке практичне використання кривої Рамсея як з двома параметрами, так і її модифікацій з більшою кількістю параметрів, для наближення експериментальних залежностей стримується частою втратою цією кривою логістичної форми при виконанні апроксимації без додаткових вимог до співвідношень між її параметрами. В статті розглядаються модифікації кривої Рамсея з трьома та п’ятьма параметрами. Перша та друга похідні від досліджуваних модифікацій функції Рамсея мають особливу структуру. Вони є добутками поліноміальної та експоненціальної функцій. Це дозволяє використовувати теорему Штурма про кількість коренів полінома на відрізку для контроля форми апроксимуючої кривої. Показано, що з ростом кількості параметрів у модифікованої кривої значно зростає кількість можливих сполучень обмежень на значення параметрів, які забезпечують збереження її S-подібної форми. Розв’язання задачі апроксимації в цьому випадку складається з розв’язання низки задач умовної глобальної оптимізації з різними обмеженнями та вибору розв’язку, який забезпечує найменшу похибку наближення. Також виконані дослідження щодо точності оцінювання параметрів кривої Рамсея в залежності від точності експериментальних даних. Для імітації наявності похибок вимірювань до значень детермінованої послідовності додавалися значення нормально розподіленої випадкової величини з математичним сподіванням, рівним нулю, та різними значеннями середньоквадратичного відхилення для різних серій обчислювальних експериментів. Обчислювальні експерименти показали суттєву чутливість значень параметрів функції Рамсея до точності вимірювань експериментальних даних.