Вісник № 1-2. Математичне моделювання в техніці та технологіях
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/55966
Переглянути
Документ Відновлення розривної функції двох змінних різними інформаційними операторами з використанням трикутних елементів(Національний технічний університет "Харківський політехнічний інститут", 2021) Першина, Юлія ІгорівнаДосліджуються методи побудови математичних моделей розривних функцій двох змінних з використанням різної інформації про них: односторонні значення в точках та односторонні сліди вздовж заданої системи ліній. Розглядається випадок, коли область визначення шуканої функції тріангульована прямокутними трикутниками. Якщо застосовувати інтерполяційні або апроксимаційні методи наближення, то для їх побудови повинні бути задані значення функції в заданих точках;якщо ж застосовувати інтерлінаційні методи – сліди шуканої функції вздовж заданої системи ліній. В роботі будуються розривний інтерполяційний та апроксимаційний сплайни для наближення розривної функції двох змінних із заданими односторонніми значеннями в заданій системі точок (в нашому випадку, в вершинах прямокутних трикутників), доводяться теореми про оцінку похибки наближення побудованими розривними конструкціями. Також в роботі будується розривний інтерлінаційний сплайн, в якому використовується зовсім інша інформація про розривну функцію – односторонні сліди вдовж заданої системи ліній (в нашому випадку, вздовж сторін прямокутних трикутників). Інтерлінація функцій може знайти широке застосування в автоматизації проектування корпусів літаків, автомобілів; під час отримання і обробки результатів гідролокації та радіолокації, при вирішенні задач компʼютерної томографії, в цифровій обробці сигналів і в багатьох інших областях. В статті також доводяться теореми про інтегральний вигляд залишку та про оцінку похибки наближення побудованим розривним оператором інтерлінації. Наводяться обчислювальні експерименти, які порівнюють результати наближення розривної функції двох змінних різними інформаційними операторами з використанням трикутних елементів. Надалі планується застосувати побудовані оператори розривної апроксимації та інтерлінації для вирішення двовимірної задачі компʼютерної томографії з суттєвим використанням неоднорідності внутрішньої структури тіла, яку необхідно відновити.