2022
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/56991
Переглянути
3 результатів
Результати пошуку
Документ Вибір архітектури нейронної мережі для автоводія транспортного засобу(Національний технічний університет "Харківський політехнічний інститут", 2022) Догадайло, Олександр Сергійович; Успенський, Валерій БорисовичВ даній роботі розглядається задача вибору архітектури нейронної мережі для створення автопілоту. Був створений автопілот для віртуального транспортного засобу, що може рухатися визначеним маршрутом та реагувати на різні сигнали світлофора. Вибрана архітектура, а саме згорткова нейронна мережа, має високу ефективність в задачі розпізнавання зображень. Автопілот складається з двох згорткових нейронних мереж, одна розпізнає маршрут руху, інша розпізнає сигнали світлофора. Через велику кількість шумів, фотографії для розпізнавання світлофорів були оброблені для підсилення червоного каналу та занулення зеленого і синього, що допомогло в розпізнаванні червоного та жовтого кольорів. Як середовище для навчання нейронних мереж та перевірки працездатності автопілоту, в цілому, була створена двовимірна гра з видом зверху. Даний автопілот, на відміну від інших, використовує лише зображення для орієнтації в просторі. Тестування моделі автопілоту показало майже 100 % точність на розпізнаванні маршруту та сигналів світлофора. Позитивний результат тестування показав, що автопілот може виконувати керування в простому середовищі і це дає можливість ускладнити робоче середовище. Використовуючи тільки зображення, такий автопілот є дешевшим за існуючі. Актуальність даної роботи ґрунтується на дослідженнях збільшення кількості транспортних засобів та шкідливих викидів в атмосферу у майбутньому. У статті розглянуті літературні джерела, обґрунтування вибору архітектури нейронної мережі, опис програмної реалізації, показані результати проведення тестування, у висновках вказаний можливий напрямок розвитку даної теми.Документ Дослідження властивостей середовища керування даними та оцінка часу передачі великих наборів даних(Національний технічний університет "Харківський політехнічний інститут", 2022) Броварник, Олексій Олексійович; Овсяніков, Владислав ВалерійовичУ статті розглядається задача оцінювання часу передачі великих наборів даних через розподілене середовище керування даними на основі самостійно створеної моделі нейронної мережі та дослідження властивостей цього середовища за допомогою методів статистичного аналізу. Для початкового аналізу отримано метадані для успішних передач файлів в системі, трансформовано та виділено змінні, які впливають на час передачі файлів. Під час аналізу використані різні вибірки, щоб перевірити, чи схожі результати в усіх наявних даних. Застосовано методи кореляційного, регресійного аналізу для дослідження середовища. Виявлено, що не існує чіткої кореляції між часом передачі та одним з вхідних параметрів. Час передачі файлу залежить від ряду зовнішніх факторів, які неможливо отримати за допомогою метаданих, але можливо частково дослідити середовище використовуючи отримані метадані. Використано модель на основі двох вхідних рівнів для числових та категоріальних змінних, а потім об’єднаних в одну гілку. Для зображення результатів передбачення використовуються показники RMSE та діаграма розсіювання для порівняння цільових та передбачених значень. Проведені розрахунки показують задовільні результати передбачень.Документ Дослідження нейронних мереж для прогнозування вартості акцій компаній у нестабільній економіці(Національний технічний університет "Харківський політехнічний інститут", 2022) Москаленко, В'ячеслав Васильович; Санталова, Анастасія Романівна; Фонта, Наталія ГригорівнаДані дослідження присвячені аналізу і вибору нейронних мереж різної архітектури та гібридних моделей, до яких включені нейронні мережі, для прогнозування ринкової вартості акцій на фондовому ринку країни, яка перебуває у процесі нестабільного розвитку. Аналіз та прогнозування таких фондових ринків не може бути проведено з використанням класичних методів. Актуальність теми дослідження зумовлена необхідністю розробки програмних систем, які реалізують алгоритмічне забезпечення прогнозування ринкової вартості акцій в Україні. Впровадження таких програмних систем до контуру прийняття інвестиційних рішень у компаніях, які зацікавлені у підвищенні інформаційної прозорості фондового ринку України, дасть можливість покращити прогнози щодо ринкової вартості акцій. Це у свою чергу сприятиме покращенню інвестиційного клімату та забезпечить зростання інвестування в українську економіку. Проведено аналіз результатів існуючих досліджень щодо використання нейронних мереж та інших методів обчислювального інтелекту для моделювання поведінки учасників фондового ринку та прогнозування ринку. У статті надано результати дослідження щодо використання нейронних мереж різної архітектури для прогнозування ринкової вартості акцій на фондових ринках України. Для прогнозування було обрано чотири акції Української фондової біржі: Центренерго (CEEN); Укртелеком (UTLM); Крюківський Вагонобудівний Завод ПАТ (KVBZ); Райффайзен Банк Аваль (BAVL). Для експериментального дослідження були обрані такі моделі: довга короткострокова пам’ять LSTM; згорткова нейронна мережа CNN; гібридна модель, яка поєднує дві нейронної мережі CNN і LSTM; гібридна модель, що складається з алгоритму декомпозиції варіаційного режиму та нейронної мережі довгострокової пам’яті (VMD-LSTM); гібридна модель VMD-CNN-LSTM глибокого навчання на основі варіаційного режиму (VMD) та двох нейронних мереж. Розраховано оцінки якості прогнозу за різними метриками. Зроблено висновок, що використання гібридної моделі VMD-CNN-LSTM дає мінімальну помилку прогнозування ринкової вартості акцій українських підприємств. Також доцільно використовувати модель VMD-LSTM для прогнозування на біржах країн з нестабільною економікою.