2022
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/56991
Переглянути
2 результатів
Результати пошуку
Документ Витрати потужності на привод турбінного ступеня при маловитратних режимах(Національний технічний університет "Харківський політехнічний інститут", 2022) Шубенко, Олександр Леонідович; Альохіна, Світлана Вікторівна; Голощапов, Володимир Миколайович; Котульська, Ольга Валеріївна; Парамонова, Тетяна Миколаївна; Сенецька, Дар'я ОлегівнаРозглянуто задачу по визначенню витрат потужності під час роботи турбінного ступеня в маловитратному режимі. Для її вирішення використаний теоретично-експериментальний підхід, побудований на одновимірній теорії руху нестисливого робочого середовища та результатів експериментального дослідження ряду моделей ступенів великої віяловості, в якому робочим середовищем служить повітря. При експлуатації теплофікаційних турбін циліндри низького тиску до 85 % часу працюють в області маловитратних режимів як із частково, так і повністю закритою поворотною діафрагмою регулюючої ступені. При зниженні об'ємної витрати пари в проточній частині циліндру низького тиску на маловитратних режимах розвивається привтулковий відрив потоку і формується вихор у міжвінцевому зазорі ступені. Режим, при якому потужність, що підводиться до робочого колеса, витрачається на підтримку цих течій, відповідає "чисто" вентиляційному режиму. На відміну від існуючих методик для визначення вентиляційних витрат потужності у ступенях великої віяловості в роботі пропонується залежність, яка базується на геометричній конфігурації ступенів циліндру низького тиску теплофікаційних турбін та умовах їх експлуатації. Враховуючи процеси, що відбуваються в ступені, та дані, отримані на експериментальному стенді, визначено формули для врахування складових витрат потужності – функції впливу кутів виходу потоку з направляючого апарата ступені; впливу віяловості l/Dcp; впливу відносної ширини робочої лопатки B/Dcp та кута нахилу периферійного меридіонального обводу γм. Отримані залежності, що дозволяють визначити коефіцієнти витрат потужності для ступеня на вентиляційному режимі та режимі роботи до холостого ходу, дають змогу обчислити витрати потужності у всьому діапазоні зміни маловитратних режимів. На прикладі останнього ступеня турбіни Т-250/300-240 виконано зіставлення результатів розрахункових досліджень за запропонованою залежністю з результатами, що отримані в реальних умовах натурних експериментів, яке показало, що їх розходження не перевищує 5 %.Документ Бінарна електрогенеруюча установка для утилізації теплоти димових газів котлів(Національний технічний університет "Харківський політехнічний інститут", 2022) Шубенко, Олександр Леонідович; Сенецький, Олександр Володимирович; Бабак, Микола ЮрійовичРобота присвячена розробці сучасних теплових схем для виробництва електричної енергії при утилізації теплоти димових газів котлів енерговузлів. На прикладі типової районної котельні досліджено параметри та потенціал теплоти, яка скидається до атмосфери з димовимигазами котлів, та визначено, що їх достатньо для генерації електричної енергії шляхом реалізації так званих органічних циклів Ренкіна. Для утилізації теплоти вихідних газів з температурою 280 °С при їх витраті 10 кг/с було досліджено триконтурну електрогенеруючу установку, яка подібна тим, що використовуються у геотермальній енергетиці. Проаналізовано ряд турбінних робочих тіл, що відповідають необхідним вимогам, та рекомендовано найбільш підходящі. Беручи до уваги характеристики джерела теплоти, з метою визначення раціональної конфігурації схеми виконано 50 розрахунків багатоконтурних теплових схем енергоустановок, що працюють на різних робочих тілах. Результати досліджень показали, що ефективність (електричний ККД) та потужність турбінного циклу визначається потенціалом скидної теплоти, термодинамічними властивостями робочого тіла, структурними та параметричними характеристиками схеми. Серед досліджених найкращі показники: електричний ККД 20,6 %, «корисну» електричну потужність 357 кВт при температурі вихідних газів 131 °С мала триконтурна утилізаційна установка з робочими тілами Вода / R-245fa / R-245fa. Варіант схеми з робочими тілами Вода / R-600a / R-600a програвав кращому варіанту ~ 8 кВт електричної потужності, але був визнаним більш перспективним, оскільки фреон R-600a (ізопропан) має споживчі переваги над R-245fa. Були також проведені розрахункові дослідження бінарної теплової схеми енергоустановки, які показали, що раціональним є використання для 1-го контуру Води, для 2-го – R-600a. Таке рішення дозволило отримати розрахункову «корисну» електричну потужність енергокомплексу ~ 290,8 кВт (1-й контур ~ 129 кВт, 2-й ~ 161,8 кВт). Програш бінарної схеми по «корисній» електричній потужності перспективному варіанту триконтурної схеми компенсується суттєвим спрощенням теплової схеми і, як наслідок, значно меншими капітальними витратами. Питома маса запропонованого теплообмінного обладнання установки з бінарною тепловою схемою становить ~ 150 кг/кВт. Враховуючи властивості робочого тіла, здійснено попередню проробку конструкцій турбін 1-го (Вода) та 2-го (R-600a) контурів. Для 1-го контуру запропоновано використовувати 6-ти ступінчату осьову турбіну, для 2-го – одноступінчату радіальну. Розрахунковим шляхом визначені геометричні характеристики проточних частин турбін. Попередня спрощена оцінка простого терміну окупності свідчить о непоганих перспективах впровадження запропонованої енергозберігаючої установки.