2022

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/56991

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Дослідження конструкції концентратору сонячного випромінювання для автономних фотоенергетичних установок
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Кіріченко, Михайло Валерійович; Нікітін, Віктор Олексійович; Зайцев, Роман Валентинович; Хрипунов, Геннадій Семенович; Меріуц, Андрій Володимирович; Шкода, Дмитро Сергійович
    Суттєве зростання потужності завдяки використанню концентраторів сонячного випромінювання підтверджує доцільність використання концентрованого випромінювання, а розробку концентраторів робить окремою задачею оптичної фізики. Особливої уваги заслуговують концентратори для отримання високого ступеню концентрації випромінювання, їх розробка потребує цілої низки інноваційних технічних рішень. В роботі проведені комплексні дослідження з оптимізації концентраторів сонячного випромінювання для використання у складі висококонцентраційних фотоенергетичних систем шляхом дослідження оптичних властивостей та особливостей деградації фацетного, вакуумного та сегментного концентраторів. За результатами натурної апробації експериментального зразка фацетного концентратора було виявлено, що процедура налаштування концентратору пов'язана із індивідуальним коректуванням положення кожного із 400 дзеркал, що є вкрай складно. А внаслідок недостатньої жорсткості конструкції концентратор потребує корекції в налаштуваннях після операцій по переміщенню чи збиранню-розбиранню експериментального зразка концентратора. Оскільки концентратор потребує регулярного очищення внаслідок природнього забруднення від пилу, дощу та інших природніх факторів дана операція пов'язана із механічним впливом на дзеркала, що призводить до порушення їх налаштувань. За результатами апробації концентратору вакуумного типу було встановлено, що такі концентратори є дуже чутливими до якості виготовлення основи оскільки внаслідок особливостей конструкції практично не піддаються налаштуванню після виготовлення також вони мали занадто великий розмір фокальної плями яка перевищує розмір теплоприймача. За результатами натурної апробації встановлено, що перспективним для використання у складі фотоенергетичних систем є конструкція концентратору сегментного типу, що являє собою круговий масив сегментів виготовлених з дзеркального матеріалу, інтегральний коефіцієнт відбиття якого сягає 95% та виготовлено експериментальний зразок площею 3,6 м², що дозволяє отримати фокусну пляму діаметром 120 мм з трапецієвидним розподілом освітленості із коефіцієнтом концентрації випромінювання на рівні 360 од.
  • Ескіз
    Документ
    Керування та охолодження електронного навантаження на основі fet-транзистора
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Зайцев, Роман Валентинович; Кіріченко, Михайло Валерійович; Мінакова, Ксенія Олександрівна; Нікітін, Віктор Олексійович; Воробйов, Богдан Віталійович; Харченко, Микола Михайлович
    Впровадження електронного навантаження для випробування високоточних низьковольтних джерел (сонячних батарей) вимагає ретельного перегляду не тільки схемотехнічної конструкції, а й теплотехнічної та механічної конструкції такого приладу. Сучасні досягнення у розробці сонячних елементів та інших низьковольтних джерел енергії призвели до необхідності створення компактнихта експресних систем їх тестування, котрі не можна реалізувати на існуючих рішеннях. У статті розглядається принцип створення та розрахунку оптимального рішення для реалізації електронного навантаження. Для досягнення мети використовуються методи аналізу сучасної електронної бази, розрахунки основних фізичних та електричних параметрів, а також їх моделювання. На основі розглянутих фізико-схемних рішень для реалізації електронного блоку навантаження була розроблена відповідна електрична схема. Транзистори керуються чотирма уніполярними операційними підсилювачами, інтегрованими в мікросхему LM324. Управління електронним блоком навантаження реалізується шляхом управління напругою на клемах позитивного зворотного зв'язку, яка додатково стабілізується мікросхемою TL431. Пристрій живиться від джерела постійного стабілізованого струму напругою 12 В (забезпечує додаткову фільтрацію від коливань напруги). Розрахунок теплового балансу дозволяє правильно підібрати систему охолодження для стабільної роботи системи. Управління електронним блоком навантаження реалізовано за допомогою мікросхем INA219 та Xicor X9C, запропоновано спосіб їх калібрування. Ці рішення дозволять створити універсальне рішення електронного навантаження для дослідження напівпровідникових приладів і сонячних елементів. Дотримання рекомендацій і принципів, які викладені в цій статті, забезпечить навантаженню можливість працювати на великій потужності і при цьому зберегти хороші характеристики та надійність.