Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
2 результатів
Результати пошуку
Документ Electrical engineering equipment for generating and measuring of complete pulse current of artificial lightning in the conditions of high-voltage electrophysics laboratory(Національний технічний університет "Харківський політехнічний інститут", 2024) Baranov, M. I. ; Buriakovskyi, S. G.Goal. Decision of problem scientific and technical task on the reliable generating and measuring in the conditions of high-voltage electrophysics laboratory basic component of complete pulse current of artificial lightning with the rationed amplitude-temporal parameters (ATPs) with the use of the modernized generator of current of lightning of type of UITOM-1. Methodology. Bases of the applied electrical engineering, electrodynamics and electrophysics, electrophysics bases of technique of high-voltage and high pulse currents, bases of high-voltage pulse technique and measuring technique. Results. Information, which specify on a decision at Research and Design Institute "Molniya" of National Technical University "Kharkiv Polytechnic Institute" problem scientific and technical task, related to the reliable generating and measuring in the conditions of high-voltage electrophysics laboratory of complete pulse current of artificial lightning, which contains pulse A- (repeated pulse D-), intermediate B- and long-term C- (shortened long C*-) components of this current, is resulted, ATPs which answer the hard technical requirements of normative documents of the USA of SAE ARP 5412: 2013, SAE ARP 5414: 2013 and SAE ARP 5416: 2013. Short information is indicated about the applied electrical circuits of separate high-voltage generators of pulse currents of condenser type of GIC-A (GIC-D), GICB and GIC-C (GIC-C*), which it is worked as synchronous appearance on the general electrical loading in composition the modernized powerful high voltage generator of complete pulse e current of artificial lightning of type of UITOM-1, and in-use highvoltage measuring facilities which contain the heavy-current low-resistance shunts of type of SHK-300 for simultaneous registration with their help on examinee on stability to lightning devices objects of aviation and space-rocket technique of ATPs proper component of complete i pulse current of artificial lightning. Technical examples are resulted and the row of results of practical application of the indicated domestic powerful high-voltage proof-of-concept electrophysics equipment is described at the tests of elements of some aircrafts (ACs) on resistibility to the direct action on them of complete pulse current of artificial lightning with rationed ATPs. Originality. A problem is formulated and having the important applied value in area of aviation and space-rocket technique for the leading countries of the world scientific and technical task on the reliable generating and measuring in the conditions of high-voltage electrophysics laboratory indicated component of complete pulse current of artificial lightning with rationed ATPs and concrete electro-technological ways and hardware are indicated for its successful decision. Practical value. The use of the modernized powerful high-voltage generator of complete pulse current of artificial lightning of type of UITOM-1 developed in practice and created in Ukraine will allow to conduct the real verification on resistibility to the action of lightning of different side systems, devices and construction elements, containing metallic and composition materials, both again developed and modernized ACs, that will be instrumental in the increase of vitality of such ACs in the extreme terms of their flight and stay in an electrical active earthly atmosphere with flowing in it storm electrical discharges.Документ A generalized physical principle of development of plasma channel of a high-voltage pulse spark discharge in a dielectric(Національний технічний університет "Харківський політехнічний інститут", 2024) Baranov, M. I.Goal. Development of the generalized physical principle of development of plasma channel of a high-voltage electrical pulse spark discharge in the homogeneous dielectric of the different aggregate state. Methodology. Basis of physical optics, theoretical electrical engineering, electrophysics bases of technique of high-voltage and large pulse currents, bases of high-voltage pulse technique and measuring technique. Results. Development of physical principle of development of plasma channel of an electric pulse spark discharge is executed in a homogeneous gas dielectric on the applied example of the use in calculations and experiments of the double-electrode discharge system (DEDS) with a long air interval, testing action of standard interconnect аperiodic pulse of high-voltage of temporal shape of Tₘ /Тd ≈200 μs/1990 μs of positive polarity. The generalized formula is got for the calculation of total length of l c of the real way of development of an pulse spark discharge in an air dielectric, which allowed to formulate the offered physical principle in the following kind: "The plasma channel of an pulse spark discharge in a gas dielectric spreads from one of its points to other after a way length of l c, providing the least falling on it of electric voltage of Uc". It is shown that this principle in the first approaching can be applied and to the homogeneous liquid and hard dielectrics. Comparison of the developed physical principle of distribution of plasma channel of an electrical spark discharge is executed in a dielectrical environment with fundamental Fermat physical principle (a law) for distribution of light in an optically transparent environment, which specifies on mathematical likeness and closeness on destiny of these physical principles. Calculation estimations of falling of electric voltage of Uc on total length of l c of the real zigzag way of development in the air dielectric of DEDS a "edge-plane" with the least length of its discharge interval of lmin=1,5 m is presented, that a value Uc does not exceed 9 % from the experimental level of aggressive voltage of U≈611,6 кV in this DEDS for the аperiodic pulse of voltage of Tₘ/Тd≈200 μs/1990 μs. It is set that the estimated time of td advancement of leader channel of electric pulse discharge in air DEDS (lmin=1,5 m) on its real way total length of l c≈1,53 m makes t d≈15,3 μs, and experimental duration of cut of Tdc of the indicated аperiodic impulse of voltage utilized in experiments, characterizing time of short circuit by the plasma channel of discharge of air interval in DEDS, appears equal Тdc≈t d≈17 μs. Originality. The generalized physical principle of development of plasma channel of a high-voltage electrical pulse spark discharge is first developed in the homogeneous dielectric of the different aggregate state. Practical value. Application in electrical engineering practice and high-voltage pulse technique of the offered principle of distribution in the dielectrics of plasma channel of an pulse spark discharge will allow to develop both new and to perfect the existent methods of computer design of electro-discharge processes in the gas, liquid and hard insulation of different high-voltage electrical power engineering and electrophysics devices, directed on the increase of reliability of their operation. References 25, figures 5.