Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
2 результатів
Результати пошуку
Документ Smart current control of the wind energy conversion system based permanent magnet synchronous generator using predictive and hysteresis model(Національний технічний університет "Харківський політехнічний інститут", 2024) Zine, Hamed Kamel Eddine; Abed, KhoudirGiven the increasing demand for performance and efficiency of converters and power drives, the development of new control systems must take into account the real nature of these types of systems. Converters and dimmers power are nonlinear systems of a hybrid nature, including elements linear and nonlinear and a finite number of switching devices. Signals input for power converters are discrete signals that control the ‘opening and closing’ transitions of each component. Problem. In the multilevel inverters connected to grid, the switching frequency is the principal cause of harmonics and switching losses, which by nature, reduces the inverter’s efficiency. Purpose. For guarantee the satisfying quality of power transmitted to the electrical grid, while ensuring reduction of current ripples and output voltage harmonics. Novelty. This work proposes a new smart control, based on a predictive current control of the three level neutral point clamped inverter, used in Wind Energy Conversion System (WECS) connected to grid, based permanent magnet synchronous generator, powered by a hysteresis current control for the rectifier. This new formula guarantees handling with the influence of harmonics disturbances (similar current total harmonic distortion), voltage stress, switching losses, rise time, over or undershoot and settling time in WECS. Methods. The basic idea of this control is to choose the best switching state, of the power switches, which ameliorates the quality function, selected from order predictive current control of WECS. Results. Practical value. Several advantages in this intelligent method, such as the fast dynamic answer, the easy implementation of nonlinearities and it requires fewer calculations to choose the best switching state. In addition, an innovative algorithm is proposed to adjust the current ripples and output voltage harmonics of the WECS. The performances of the system were analyzed by simulation using MATLAB/Simulink.Документ Intelligent fuzzy back-stepping observer design based induction motor robust nonlinear sensorless control(Національний технічний університет "Харківський політехнічний інститут", 2024) Abed, Khoudir; Zine, Hamed Kamel EddineThe control algorithm of Induction Motor (IM) is massively dependent on its parameters; so, any variation in these parameters (especially in rotor resistance) gives unavoidably error propagates. To avoid this problem, researches give more than solution, they have proposed Variable Structure Control (VSC), adaptive observers such as Model Reference Adaptive System, Extended Luenberger Observer (ELO) and the Extended Kalman Filter (EKF), these solutions reduce the estimated errors in flux and speed. As novelty in this paper, the model speed observer uses the estimated currents and voltages as state variables; we develop this one by an error feedback corrector. The Indirect Rotor Field Oriented Control (IRFOC) uses the correct observed value of speed; in our research, we improve the observer’s labour by using back-stepping Sliding Mode (SM) control. Purpose. To generate the pulse-width modulation inverter pulses which reduce the error due of parameters variations in very fast way. Methods. We develop for reach this goal an exploration of two different linear observers used for a high performance VSC IM drive that is robust against speed and load torque variations. Firstly, we present a three levels inverter chosen to supply the IM; we present its modelling and method of control, ending by an experiment platform to show its output signal. A block diagram of IRFOC was presented; we analyse with mathematic equations the deferent stages of modelling, showed clearly the decoupling theory and the sensorless technique of control. The study described two kinds of observers, ELO and EKF, to estimate IM speed and torque. By the next of that, we optimize the step response using the fuzzy logic, which helps the system to generate the PI controller gains. Both of the two observers are forward by SM current controller, the convergence of SM-ELO and SM-EKF structures is guaranteed by minimizing the error between actual and observed currents to zero. Results. Several results are given to show the effectiveness of proposed schemes.