Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
1 результатів
Результати пошуку
Документ Improvement of power quality in grid-connected hybrid system with power monitoring and control based on internet of things approach(Національний технічний університет "Харківський політехнічний інститут", 2022) Balakishan, Padakanti ; Chidambaram, Ilanji Akilandam; Manikandan, ManiThis article proposes a new control monitoring grid connected hybrid system. The proposed system, improvement of power quality is achieved with internet of things power monitoring approach in solar photovoltaic grid system network. The novelty of the proposed work consists in presenting solar power monitoring and power control based internet of things algorithm, to generate DC voltage and maintain the constant voltage for grid connected hybrid system. Methods. The proposed algorithm which provides sophisticated and cost-effective solution for measuring the fault and as maximum power point tracking assures controlled output and supports the extraction of complete power from the photovoltaic panel. The objective of the work is to monitor and control the grid statistics for reliable and efficient delivery of power to a hybrid power generation system. Internet of things is regarded as a network comprising of electronic embedded devices, physical objects, network connections, and sensors enabling the sensing, analysis, and exchange of data. The proposed control technique strategy is validated using MATLAB/Simulink software and real time implementation to analysis the working performances. Results. The results obtained show that the power quality issue, the proposed system to overcome through monitoring of fault solar panel and improving of power quality. The obtained output from the hybrid system is fed to the grid through a 3ϕ voltage source inverter is more reliable and maintained power quality. The power obtained from the entire hybrid setup is measured by the sensor present in the internet of things-based module. In addition to that, the photovoltaic voltage is improved by a boost converter and optimum reliability is obtained with the adoption of the perturb & observe approach. The challenges in the integration of internet of things – smart grid must be overcome for the network to function efficiently. Originality. Compensation of power quality issues, grid stability and harmonic reduction in distribution network by using photovoltaic based internet of things approach is utilized along with sensor controller. Practical value. The work concerns a network comprising of electronic embedded devices, physical objects, network connections, and sensors enabling the sensing, analysis, and exchange of data. In this paper, internet of things sensors are installed in various stages of the smart grid in a hybrid photovoltaic – wind system. It tracks and manages network statistics for safe and efficient power delivery. The study is validated by the simulation results based on MATLAB/Simulink software and real time implementation.