Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
2 результатів
Результати пошуку
Документ Fault diagnosis in a five-level multilevel inverter using an artificial neural network approach(Національний технічний університет "Харківський політехнічний інститут", 2023) Parimalasundar, Ezhilvannan; Senthil Kumar, Ramanathan; Chandrika, Vanitha Selvaraj; Suresh, KrishnanIntroduction. Cascaded H-bridge multilevel inverters (CHB-MLI) are becoming increasingly used in applications such as distribution systems, electrical traction systems, high voltage direct conversion systems, and many others. Despite the fact that multilevel inverters contain a large number of control switches, detecting a malfunction takes a significant amount of time. In the fault switch configurations diode included for freewheeling operation during open-fault condition. During short circuit fault conditions are carried out by the fuse, which can reveal the freewheeling current direction. The fault category can be identified independently and also failure of power switches harmed by the functioning and reliability of CHB-MLI. This paper investigates the effects and performance of open and short switching faults of multilevel inverters. Output voltage characteristics of 5 level MLI are frequently determined from distinctive switch faults with modulation index value of 0.85 is used during simulation analysis. In the simulation experiment for the modulation index value of 0.85, one second open and short circuit faults are created for the place of faulty switch. Fault is identified automatically by means of artificial neural network (ANN) technique using sinusoidal pulse width modulation based on distorted total harmonic distortion (THD) and managed by its own. The novelty of the proposed work consists of a fast Fourier transform (FFT) and ANN to identify faulty switch. Purpose. The proposed architecture is to identify faulty switch during open and short failures, which has to be reduced THD and make the system in reliable operation. Methods. The proposed topology is to be design and evaluate using MATLAB/Simulink platform. Results. Using the FFT and ANN approaches, the normal and faulty conditions of the MLI are explored, and the faulty switch is detected based on voltage changing patterns in the output. Practical value. The proposed topology has been very supportive for implementing non-conventional energy sources based multilevel inverter, which is connected to large demand in grid.Документ Performance investigation of modular multilevel inverter topologies for photovoltaic applications with minimal switches(Національний технічний університет "Харківський політехнічний інститут", 2022) Parimalasundar, Ezhilvannan; Kumar, Nathella Munirathnam Giri; Geetha, Prahalathan; Suresh, KrishnanIntroduction. In recent years, a growing variety of technical applications have necessitated the employment of more powerful equipment. Power electronics and megawatt power levels are required in far too many medium voltage motor drives and utility applications. It is challenging to incorporate a medium voltage grid with only one power semiconductor that has been extensively modified. As a result, in high power and medium voltage settings, multiple power converter structure has been offered as a solution. A multilevel converter has high power ratings while also allowing for the utilization of renewable energy sources. Renewable energy sources such as photovoltaic, wind, and fuel cells may be readily connected to a multilevel inverter topology for enhanced outcomes. The novelty of the proposed work consists of a novel modular inverter structure for solar applications that uses fewer switches. Purpose. The proposed architecture is to decrease the number of switches and Total Harmonic Distortions. There is no need for passive filters, and the proposed design enhances power quality by creating distortion-free sinusoidal output voltage as the level count grows while also lowering power losses.