Видання НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Plasma acceleration in the atmosphere by pulsed inductive thruster
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Korytchenko, K. V.; Bolyukh, V. F.; Buriakovskyi, S. G.; Kashansky, Y. V.; Kocherga, O. I.
    One of the directions of development of plasma technologies consists in the formation of gas-metal plasma formations and throwing them to a certain distance. Known thrusters of plasma formation either have an electrode system that is prone to erosion, or a discharge system in a solid dielectric substance in which ablation occurs, or a complex gas-dynamic system with fuel supply. They do not provide acceleration of plasma formation in the atmosphere for a significant distance. Purpose. A theoretical and experimental study of electromechanical and thermophysical processes in a plasma thruster, which ensures the formation of a plasma formation due to thermal ionization by an induced current in a thin conductor layer during a high-voltage discharge on an inductor and the accelerating of a plasma formation in the atmosphere for a significant distance. Methodology. The proposed concept of a plasma thruster, in which the inductor inductively interacts with a combined armature, which includes an aluminum armature in the form of a thin (0.5-1 μm) foil, a copper armature made of a thicker foil (35-50 μm).On the basis of a mathematical model that takes into account the uneven distribution of currents in the inductor and conductive armatures, the features of the process of acceleration the combined armature in the atmosphere were established and experimental studies were carried out. Results. The electromechanical and thermal characteristics of the plasma thruster were calculated. It was established that the choice of the thickness of the dielectric layer of the armature, to which the aluminum and copper armatures are attached, is determined by the energy balance between the heating temperature of the aluminum armature and the electromechanical indicators of the thrower. Scientific novelty. It was experimentally established that the greatest density and homogeneity is observed in the middle of the plasma formation, which has the shape of a torus, moving away from the dielectric sheet on which the aluminum armature was located. As the voltage of the capacitive energy storage increases, the induced current density in the armature increases and the plasma formation becomes more uniform. Practical value. In comparison with the experimental results, the calculated current in the inductor coincides both in shape and in magnitude with an accuracy of 7 %. The biggest difference between the calculated and experimental currents of the inductor occurs when the aluminum armature is thermally destroyed. The transition of an aluminum armature into a plasma formation depends significantly on the voltage of the capacitive energy storage.
  • Ескіз
    Документ
    Efficiency of multi-armature linear pulse electromechanical power and speed converters
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Bolyukh, V. F.; Kocherga, O. I.
    Introduction. High-speed linear pulse electromechanical converters (LPEC) provide acceleration of the executive element in a short active section to high speed with significant displacement, while power-purpose LPECs create powerful power impulses of the executive element on the object of influence with minor movements. One of the areas of improvement of LPEC is the creation of multi-armature structures. Methodology. To analyze the electromechanical characteristics and indicators of LPEC, a mathematical model was used, which takes into account the interconnected electrical, magnetic, mechanical and thermal processes that occur when connected to a pulse energy source with a capacitive energy storage. The main results of the calculations were performed in the COMSOL Multiphysics software environment and confirmed by experimental studies in laboratory conditions. Results. The features of the electromechanical processes of multi-armature LPECs are established and their indicators are determined. With the help of efficiency criteria, which take into account electrical, power, speed and magnetic indicators in a relative form with different options for their evaluation strategy, it was established that multi-armature LPECs for power purposes have increased efficiency, and for high-speed LPECs the use of multiarmature configurations is impractical. The conducted experimental studies confirm the reliability of the calculated results. Originality. It has been established that almost all multi-armature LPECs for power purposes have higher efficiency compared to a converter with one armature, and for high-speed LPECs it is advisable to use traditional LPECs with one armature. Practical value. On the basis of multi-armature LPECs, models of an electromagnetic UAV catapult, a magnetic pulse press for ceramic powder materials, an electromechanical device for dumping ice and snow deposits from a power line wire, a device for destroying information on a solid-state digital SSD drive have been developed and tested.
  • Ескіз
    Публікація
    Електромеханічні та теплофізичні процеси в імпульсному індукційному прискорювачі плазмового утворення
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Коритченко, Костянтин Володимирович; Болюх, Володимир Федорович; Буряковський, Сергій Геннадійович; Кашанський, Юрій Володимирович; Кочерга, Олександр Іванович
    Роботи по створенню та метанню плазмових утворень різними способами ведуться в провідних наукових центрах світу. Досягнуто формування плазмового утворення тривалістю декілька мілісекунд та його метання у відкритому атмосферному середовищі на відстань 0,5-0,6 м. Для створення плазми використовують енергію первинного розрядного кола з подальшим прискоренням газоплазмового утворення за допомогою енергії вторинного кола. Плазмове утворення отримують і за рахунок електричного вибуху провідника. Метою статті є теоретичне та експериментальне дослідження електромеханічних та теплофізичних процесів в імпульсному індукційному прискорювачі, який забезпечує формування плазмового утворення за рахунок термічної іонізації в результаті електричного вибуху провідника та метання його у атмосферному середовищі відносно індуктора. Методика. Для аналізу електромеханічних та теплофізичних процесів в імпульсному індукційному прискорювачі плазмового утворення (ІІПП) розроблена і реалізована в програмному пакеті Сomsol Multiphysics математична модель прискорювача, в якій якір не змінює своєї форми і агрегатного стану в процесі роботи та враховує розподілені у просторі параметри. Результати. Розраховані електромеханічні і теплові характеристики прискорювача. Показано, що перевищення температури в якорі, що виконаний у вигляді алюмінієвої фольги, суттєво нерівномірно. Максимальне значення температури має місце в середній частині фольги ближче до зовнішнього краю, причому ця температура значно перевищує температуру кипіння алюмінію. Наукова новизна. Проведені експериментальні дослідження ІІПП, у якого якір виконаний з алюмінієвої та мідної фольги, а індуктор, що підключається до високовольтного ємнісного накопичувача енергії, виконаний у вигляді плоскої дискової спіралі. В процесі роботи ІІПП якір переходить в плазмовий стан і переміщується вертикально вверх, перетворюючись в об’ємний комок, або на скупчення маленьких частинок, які здіймались на декілька метрів відносно індуктора. Експериментально показано характерний круговий контур термічного нагрівання мідноїфольги якоря, яка закріплена на листі склотекстоліту. Практична цінність. Результати експериментальних досліджень з точністю до 15 % співпадають з розрахунковими і показують справедливість концепції ІІПП, в якому за рахунок високої густини індукованого струму в якорі відбувається термічна іонізація в результаті електричного вибуху провідника з переходом його в плазмовий стан. Взаємодія плазмового утворення з магнітним полем індуктора призводить до появи електродинамічної сили, яка забезпечує його переміщення у відкритому атмосферному середовищі на декілька метрів.