Видання НТУ "ХПІ"

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886

Переглянути

Результати пошуку

Зараз показуємо 1 - 4 з 4
  • Ескіз
    Документ
    Frequency analysis of stator currents of an induction motor controlled by direct torque control associated with a fuzzy flux estimator
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Mabrouk, Y. A.; Mokhtari, B.; Allaoui, Tayeb
    The best way to control the torque of an induction motor is conventional direct torque control (DTC); this control method is the most used approach in the industrial sector due to its many advantages. Its main advantages are its simplicity and its exclusive dependence on the stator resistance of the induction motor. However, the use of hysteresis comparators reduces its effectiveness, causing more torque ripple. Additionally, this results in variable operating frequency and limited frequency sampling, resulting in pseudo-random overshoot of the hysteresis band. Purpose. For these reasons, this article presents a new study aimed at confirming its shortcomings and improving the effectiveness of the control. Novelty. We propose to use fuzzy logic methods to estimate the two components of the stator flux. Methods. In traditional DTC the flux components are estimated from an equation relating the stator resistance to the stator voltage and current. In the proposed method, only stator currents and voltages are used for this evaluation, which eliminates the dependence of DTC on stator resistance. The aim of this proposal is to make DTC robust to parametric changes. Results. General harmonic distortions, rotational speed of the induction motor, electromagnetic moment, magnetic flux and stator currents are analyzed. Practical value. With this proposed technique, validated in Simulink/MATLAB, several improvements in motor behavior and control are endorsed: torque fluctuations are reduced, overshoot is completely eliminated, and total harmonic distortion is significantly reduced by 48.31 % for stator currents. This study also confirmed the robustness of DTC to changes in stator resistance.
  • Ескіз
    Документ
    Field programmable gate array hardware in the loop validation of fuzzy direct torque control for induction machine drive
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Aib, A.; Khodja, D. E.; Chakroune, S.
    Currently, the direct torque control is very popular in industry and is of great interest to scientists in the variable speed drive of asynchronous machines. This technique provides decoupling between torque control and flux without the need to use pulse width modulation or coordinate transformation. Nevertheless, this command presents two major importunities: the switching frequency is highly variable on the one hand, and on the other hand, the amplitude of the torque and stator flux ripples remain poorly controlled throughout the considered operating speed range. The novelty of this article proposes improvements in performance of direct torque control of asynchronous machines by development of a fuzzy direct torque control algorithm. This latter makes it possible to provide solutions to the major problems of this control technique, namely: torque ripples, flux ripples, and failure to control switching frequency. Purpose. The emergence of this method has given rise to various works whose objective is to show its performance, or to provide solutions to its limitations. Indeed, this work consists in validation of a fuzzy direct torque control architecture implemented on the ML402 development kit (based on the Xilinx Virtex-4 type field programmable gate array circuit), through hardware description language (VHDL) and Xilinx generator system. The obtained results showed the robustness of the control and sensorless in front of load and parameters variation of induction motor control. The research directions of the model were determined for the subsequent implementation of results with simulation samples.
  • Ескіз
    Документ
    Implementation of a new flux rotor based on model reference adaptive system for sensorless direct torque control modified for induction motor
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Saifi, R.
    Introduction. In order to realize an efficient speed control of induction motor, speed sensors, such as encoder, resolver or tachometer may be utilized. However, some problems appear such as, need of shaft extension, which decreases the mechanical robustness of the drive, reduce the reliability, and increase in cost. Purpose. In order to eliminate of speed sensors without losing. Several solutions to solve this problem have been suggested. Based on the motor fundamental excitation model, high frequency signal injection methods. The necessity of external hardware for signal injection and the adverse influence of injecting signal on the motor performance do not constitute an advantage for this technique. Fundamental model-based strategies method using instantaneous values of stator voltages and currents to estimate the rotor speed has been investigate. Several other methods have been proposed, such as model reference adaptive system, sliding mode observers, Luenberger observer and Kalman filter. The novelty of the proposed work consists in presenting a model reference adaptive system based speed estimator for sensorless direct torque control modified for induction motor drive. The model reference adaptive system is formed with flux rotor and the estimated stator current vector. Methods. The reference model utilizes measured current vector. On the other hand, the adjustable model uses the estimated stator current vector. The current is estimated through the solution of machine state equations. Practical value. The merits of the proposed estimator are demonstrated experimentally through a test-rig realized via the dSPACE DS1104 card in various operating conditions. The experimental results show the efficiency of the proposed speed estimation technique. Experimental results show the effectiveness of the proposed speed estimation method at nominal speed regions and speed reversal, and good results with respect to measurement speed estimation errors obtained.
  • Ескіз
    Документ
    Direct torque control based on second order sliding mode controller for three-level inverterfed permanent magnet synchronous motor: comparative study
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Guezi, Abderrahmane ; Bendaikha, Abdelmalik; Dendouga, Abdelhakim
    The permanent magnet synchronous motor (PMSM) has occupied a large area in the industry because of various benefits such as its simple structure, reduced moment of inertia, and quick dynamic response. Several control techniques have been introduced for the control of the PMSM. The direct torque control strategy associated to three-level clamped neutral point inverter has been proven its effectiveness to solve problems of ripples in both electromagnetic torque and stator flux with regard to its significant advantages in terms of fast torque response. Purpose. The use of a proportional integral speed controller in the direct torque control model results in a loss of decoupling with regard to parameter fluctuations (such as a change in stator resistance value induced by an increase in motor temperature), which is a significant drawback for this method at high running speeds. Methods. That is way a second order sliding mode controller based on the super twisting algorithm (STA) was implemented instead of PI controller to achieve a decoupled control with higher performance and to insure stability while dealing with parameter changes and external disturbances. Results. The simulation results carried out using MATLAB/Simulink software show that the model of direct torque control based on a three-level inverter-fed permanent magnet synchronous motor drive has better performance with second order sliding mode speed controller than the proportional integral controller. Through the response characteristics we see greater performance in terms of response time and reference tracking without overshoots. Decoupling, stability, and convergence toward equilibrium are all guaranteed.