Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
2 результатів
Результати пошуку
Документ Model reference adaptive system speed estimator based on type-1 and type-2 fuzzy logic sensorless control of electrical vehicle with electrical differential(Національний технічний університет "Харківський політехнічний інститут", 2023) Khemis, Abderrahmane; Boutabba, Tarek; Drid, SaidIn this paper, a new approach for estimating the speed of in-wheel electric vehicles with two independent rear drives is presented. Currently, the variable-speed induction motor replaces the DC motor drive in a wide range of applications, including electric vehicles where quick dynamic response is required. This is now possible as a result of significant improvements in the dynamic performance of electrical drives brought about by technological advancements and development in the fields of power commutation devices, digital signal processing, and, more recently, intelligent control systems. The system’s reliability and robustness are improved, and the cost, size, and upkeep requirements of the induction motor drive are reduced through control strategies without a speed sensor. Successful uses of the induction motor without a sensor have been made for medium- and high-speed operations. However, low speed instability and instability under various charge perturbation conditions continue to be serious issues in this field of study and have not yet been effectively resolved. Some application such as traction drives and cranes are required to maintain the desired level of torque down to low speed levels with uncertain load torque disturbance conditions. Speed and torque control is more important particularly in motor-in-wheel traction drive train configuration where vehicle wheel rim is directly connected to the motor shaft to control the speed and torque. Novelty of the proposed work is to improve the dynamic performance of conventional controller used of model reference adaptive system speed observer using both type-1 and type-2 fuzzy logic controllers. Purpose. In proposed scheme, the performance of the engine is being controlled, fuzzy logic controller is controlling the estimate rotor speed, and results are then compared using type-1 and type-2. Method. For a two-wheeled motorized electric vehicle, a high-performance sensorless wheel motor drive based on both type-2 and type-1 fuzzy logic controllers of the model reference adaptive control system is developed. Results. Proved that, using fuzzy logic type-2 controller the sensorless speed control of the electrical differential of electric vehicle EV observer, much better results are achieved. Practical value. The main possibility of realizing reliable and efficient electric propulsion systems based on intelligent observers (type-2 fuzzy logic) is demonstrated. The research methodology has been designed to facilitate the future experimental implementation on a digital signal processor.Документ Implementation of a new flux rotor based on model reference adaptive system for sensorless direct torque control modified for induction motor(Національний технічний університет "Харківський політехнічний інститут", 2023) Saifi, R.Introduction. In order to realize an efficient speed control of induction motor, speed sensors, such as encoder, resolver or tachometer may be utilized. However, some problems appear such as, need of shaft extension, which decreases the mechanical robustness of the drive, reduce the reliability, and increase in cost. Purpose. In order to eliminate of speed sensors without losing. Several solutions to solve this problem have been suggested. Based on the motor fundamental excitation model, high frequency signal injection methods. The necessity of external hardware for signal injection and the adverse influence of injecting signal on the motor performance do not constitute an advantage for this technique. Fundamental model-based strategies method using instantaneous values of stator voltages and currents to estimate the rotor speed has been investigate. Several other methods have been proposed, such as model reference adaptive system, sliding mode observers, Luenberger observer and Kalman filter. The novelty of the proposed work consists in presenting a model reference adaptive system based speed estimator for sensorless direct torque control modified for induction motor drive. The model reference adaptive system is formed with flux rotor and the estimated stator current vector. Methods. The reference model utilizes measured current vector. On the other hand, the adjustable model uses the estimated stator current vector. The current is estimated through the solution of machine state equations. Practical value. The merits of the proposed estimator are demonstrated experimentally through a test-rig realized via the dSPACE DS1104 card in various operating conditions. The experimental results show the efficiency of the proposed speed estimation technique. Experimental results show the effectiveness of the proposed speed estimation method at nominal speed regions and speed reversal, and good results with respect to measurement speed estimation errors obtained.