Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
2 результатів
Результати пошуку
Документ A novelty approach to solve an economic dispatch problem for a renewable integrated micro-grid using optimization techniques(Національний технічний університет "Харківський політехнічний інститут", 2023) Manikandan, Krishnan; Sasikumar, Sivakumar; Arulraj, RajendranThe renewable integrated microgrid has considered several distributed energy sources namely photovoltaic power plant, thermal generators, wind power plant and combined heat and power source. Economic dispatch problem is a complex operation due to large dimension of power systems. The objective function becomes non linear due to the inclusion of many constraints. Hourly demand of a commercial area is taken into consideration for performing economic dispatch and five combinations are considered to find the best optimal solution to meet the demand. The novelty of the proposed work consists of a Sparrow Search Algorithm is used to solve economic load dispatch problem to get the better convergence and accuracy in power generation with minimum cost. Purpose. Economic dispatch is performed for the renewable integrated microgrid, in order to determine the optimal output of all the distributed energy sources present in the microgrid to meet the load demand at minimum possible cost. Methods. Sparrow Search Algorithm is compared with other algorithms like Particle Swarm Optimization, Genetic Algorithm and has been proved to be more efficient than Particle Swarm Optimization, Genetic Algorithm and Conventional Lagrange method. Results. The five combinations are generation without solar power supply system and Combined Heat and Power source, generation without solar and wind power supply systems, generation including all the distributed energy sources, generation without wind power supply system and Combined Heat and Power source, generation without thermal generators. Practical value. The proposed optimization algorithm has been very supportive to determine the optimal power generation with minimal fuel to meet the large demand in commercial area.Документ Optimal performance assessment of intelligent controllers used in solar-powered electric vehicle(Національний технічний університет "Харківський політехнічний інститут", 2023) Kumar, R. S.; Reddy, C. S. R.; Chandra, B. M.Introduction. Increasing vehicle numbers, coupled with their increased consumption of fossil fuels, have drawn great concern about their detrimental environmental impacts. Alternative energy sources have been the subject of extensive research and development. Due to its high energy density, zero emissions, and use of sustainable fuels, the battery is widely considered one of the most promising solutions for automobile applications. A major obstacle to its commercialization is the battery's high cost and low power density. Purpose. Implementing a control system is the primary objective of this work, which is employed to change the energy sources in hybrid energy storage system about the load applied to the drive. Novelty. To meet the control objective, a speed condition-based controller is designed by considering four separate math functions and is programmed based on different speed ranges. On the other hand, the conventional/intelligent controller is also considered to develop the switching signals related to the DC-DC converter's output and applied the actual value. Methods. According to the proposed control strategy, the adopted speed condition based controller is a combined conventional/intelligent controller to meet the control object. Practical value. In this work, three different hybrid controllers adopted speed condition based controller with artificial neural network controller, adopted speed condition based controller with fuzzy logic controller, and adopted speed condition based controller with proportional-integral derivative controller are designed and applied separately and obtain the results at different load conditions in MATLAB/Simulink environment. Three hybrid controller's execution is assessed based on time-domain specifications.