Видання НТУ "ХПІ"
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62886
Переглянути
2 результатів
Результати пошуку
Документ Fractional-based iterative learning-optimal model predictive control of speed induction motor regulation for electric vehicles application(Національний технічний університет "Харківський політехнічний інститут", 2024) Nemouchi, B.; Rezgui, S. E.; Benalla, H.; Nebti, K.A new control strategy based on the combination of optimal model predictive control (OMPC) with fractional iterative learning control (F-ILC) for speed regulation of an induction motor (IM) for electric vehicles (EVs) application is presented. OMPC uses predictive models to optimize speed control actions by considering the dynamic behavior of the IM, when integrated with the F-ILC, the system learns and refines the speed control iteratively based on previous iterations, adapting to the specific characteristics of the IM and improving performance over time. The synergy between OMPC and F-ILC named F-ILC OMPC enhances the precision and adaptability of speed control for IMs in EVs application, and optimizes the energy efficiency and responsiveness under varying driving conditions. The novelty lies in the conjunction of the OMPC with the ILC-based on the fractional calculus to regulate the speed of IMs, which is original. Purpose. The new control strategy provides increased performance, robustness and adaptability to changing operational conditions. Methods. The mathematical development of a control law that mitigates the disturbance and achieves accurate and efficient speed regulation. The effectiveness of the suggested control strategy was assessed via simulations in MATLAB conducted on an IM system. Results. The results clearly show the benefits of the F-ILC OMPC methodology in attaining accurate speed control, minimizing steady-state error and enhanced disturbance rejection. Practical value. The main perspective lies in the development of a speed control strategy for IMs for EVs and the establishment of reliable and efficient electrical systems using ILC-OMPC control. This research has the prospect of a subsequent implementation of these results in experimental prototypes.Документ Tilt-fractional order proportional integral derivative control for DC motor using particle swarm optimization(Національний технічний університет "Харківський політехнічний інститут", 2023) Amieur, Toufik; Taibi, Djamel; Kahla, Sami; Bechouat, Mohcene; Sedraoui, MoussaIntroduction. Recently, the most desired goal in DC motor control is to achieve a good robustness and tracking dynamic of the setpoint reference speed of the feedback control system. Problem. The used model should be as general as possible and consistently represent systems heterogeneous (which may contain electrical, mechanical, thermal, magnetic and so on). Goal. In this paper, the robust tilt-fractional order proportional integral derivative control is proposed. The objective is to optimize the controller parameters from solving the criterion integral time absolute error by particle swarm optimization. The control strategy is applied on DC motor to validate the efficiency of the proposed idea. Methods. The proposed control technique is applied on DC motor where its dynamic behavior is modeled by external disturbances and measurement noises. Novelty. The proposed control strategy, the synthesized robust tilt-fractional order proportional integral derivative speed controller is applied on the DC motor. Their performance and robustness are compared to those provided by a proportional integral derivative and fractional order proportional integral derivative controllers. Results. This comparison reveals superiority of the proposed robust tilt-fractional order proportional integral derivative speed controller over the remaining controllers in terms of robustness and tracking dynamic of the set-point reference speed with reduced control energy.