Електротехніка і Електромеханіка

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894

Офіційний сайт http://eie.khpi.edu.ua/

Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.

Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).

Новини

Видання включене до Переліку наукових фахових видань України з технічних наук до найвищої категорії «А» згідно Наказу МОН України №1412 від 18.12.2018 р.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Improving the efficiency of a non-ideal grid coupled to a photovoltaic system with a shunt active power filter using a self-tuning filter and a predictive current controller
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Zorig, Assam; Babes, Badreddine; Hamouda, Noureddine; Mouassa, Souhil
    Recently, photovoltaic (PV) systems are increasingly favored for converting solar energy into electricity. PV power systems have successfully evolved from small, standalone installations to large-scale, grid-connected systems. When the nonlinear loads are connected to a grid-tied PV system, the power quality can deteriorate due to the active power supplied by the PV array, there’s a noticeable decline in the quality of power delivered to consumers. Its combination with the shunt active power filter (SAPF) enhances system efficiency. Consequently, this integrated system is adept at not only powering local loads but also at compensating for reactive power and filtering out harmonic currents from the main grid. The novelty of the work describes how an operation of a small scale PV system connected to the low voltage distribution system, and nonlinear load can be achieved, the investigation aims to analyze the system’s behavior and elucidate the advantages of employing various control algorithms. These proposed algorithms are designed to ensure a unity power factor for the utility grid while prioritizing high convergence speed and robustness against load power fluctuations across different levels of solar irradiation affecting the PV modules. The purpose of this work is to enhance the dynamic performance of the SAPF by cooperatively using a self-tuning filter (STF) based instantaneous active and reactive power method (PQ) with a novel predictive current control, enhance the system resilience, ensure optimal management of the total active power between the PV system, the electrical network and the non-linear load by integrating the functionalities of the SAPF under different levels of solar irradiation and maintain the DC-link capacitor voltage constant. Methods. A novel predictive current controller is designed to generate the switching signals piloted the three phase source voltage inverter, also a novel algorithm of instantaneous active and reactive power is developed, based on STF, to extract accurately the harmonic reference under non ideal grid voltage, also the perturb and observe algorithm is used to extract, under step change of solar irradiation, the maximum power point tracking of the PV module and the PI controller is used to maintain constant the DC-link capacitor voltage of the SAPF. Results. The efficacy of the proposed system is primarily centered on the grid side, and the performance evaluation of the control system is conducted using the STF based PQ algorithm and predictive current control. In addition, comprehensive testing encompasses all modes of operation, including scenarios involving distorted voltage sources, step changes in solar radiation, and variations in nonlinear loads. Results highlight superior performance in both transient and stable states, affirming the robustness and effectiveness of the proposed controllers. Practical value. The total harmonic distortion value of the grid current for all tests respects the IEEE Standard 519-1992.
  • Ескіз
    Документ
    Fuzzy model based multivariable predictive control design for rapid and efficient speed-sensorless maximum power extraction of renewable wind generators
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Babes, Badreddine; Hamouda, Noureddine; Kahla, Sami; Amar, Hichem; Ghoneim, S. S. M.
    A wind energy conversion system needs a maximum power point tracking algorithm. In the literature, several works have interested in the search for a maximum power point wind energy conversion system. Generally, their goals are to optimize the mechanical rotation or the generator torque and the direct current or the duty cycle switchers. The power output of a wind energy conversion system depends on the accuracy of the maximum power tracking controller, as wind speed changes constantly throughout the day. Maximum power point tracking systems that do not require mechanical sensors to measure the wind speed offer several advantages over systems using mechanical sensors. The novelty. The proposed work introduces an intelligent maximum power point tracking technique based on a fuzzy model and multivariable predictive controller to extract the maximum energy for a small-scale wind energy conversion system coupled to the electrical network. The suggested algorithm does not need the measurement of the wind velocity or the knowledge of turbine parameters. Purpose. Building an intelligent maximum power point tracking algorithm that does not use mechanical sensors to measure the wind speed and extracts the maximum possible power from the wind generator, and is simple and easy to implement. Methods. In this control approach, a fuzzy system is mainly utilized to generate the reference DC-current corresponding to the maximum power point based on the changes in the DC-power and the rectified DC-voltage. In contrast, the fuzzy model-based multivariable predictive regulator follows the resultant reference current with minimum steady-state error. The significant issues of the suggested maximum power point tracking method, such as the detailed design process and implementation of the two controllers, have been thoroughly investigated and presented. The considered maximum power point tracking approach has been applied to a wind system driving a 5 kW permanent magnet synchronous generator in variable speed mode through the simulation tests. Practical value. A practical implementation has been executed on a 5 kW test bench consisting of a dSPACEds1104 controller board, permanent magnet synchronous generator, and DC-motor drives to confirm the simulation results. Comparative experimental results under varying wind speed have confirmed the achievable significant performance enhancements on the maximum wind energy generation and overall system response by using the suggested control method compared with a traditional proportional integral maximum power point tracking controller.