Електротехніка і Електромеханіка
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894
Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.
Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).
Новини
Переглянути
Результати пошуку
Документ Experimental evaluation of conducted disturbances induced during high frequency switching of active components(Національний технічний університет "Харківський політехнічний інститут", 2023) Slimani, Helima; Zeghoudi, Abdelhakim; Bendaoud, Abdelber; Bechekir, SeyfeddinePower electronics devices are among the most widely used equipment in all fields. The increasing performance of these devices makes their electromagnetic interference factor very important. On the other hand, electromagnetic compatibility research is more and more interested in studies on the sources of electromagnetic disturbances, their propagation paths and the methods of reducing these electromagnetic disturbances. The purpose is to study the behavior of the various active power components at high frequency as well as the evaluation of their electromagnetic noise by using simulation and experimental measurement. Methods. In first time, the simulation was realized with the Lt-spice software which presents many advantages in its use and we validate in the second time the results obtained with experimental measurements. We start by study of the behavior of the diode, then the behavior of MOSFET transistor and finally the study of the behavior of the IGBT transistor. Results. All the simulations were performed using the Lt-spice software and the results obtained are validated by experimental measurements performed in the APELEC Laboratory at the University of Sidi Bel-Abbes in Algeria. The waveforms of the current and voltage across each component during its opening are presented. The results of the simulations are compared and validated with the realized measurements in order to better present the influence of the fast switching of semiconductors on the electrical quantities, which causes electromagnetic disturbances in the interconnected electrical system.Документ Experimental study of electromagnetic disturbances in common and differential modes in a circuit based on two DC/DC boost static converter in parallel(Національний технічний університет "Харківський політехнічний інститут", 2023) Benazza, Baghdadi; Bendaoud, Abdelber; Slimani, Helima; Benaissa, Mohamed; Flitti, Mohamed; Zeghoudi, AbdelhakimAn electronic control and closing control at the switch (MOSFET) will allow a parallel connection of two DC/DC boost converters. The reason for paralleling converters is to increase the efficiency of the power conversion process. This means that the overall power loss on the main switches is half the power loss on the main switch of a converter. It has been proven that DC-DC converters operating in parallel have different dynamics than a single converter. In this paper, the study is based on a system of two boost converters operating in parallel under current mode control. Although two converters operating in parallel increase the efficiency of the system, if the control parameters are not chosen correctly, the system becomes unstable and starts to oscillate. Purpose of this work is to present the analysis of high frequency electromagnetic disturbances caused by the switching of power switches in DC/DC boost static converters mounted in parallel in the presence of cables. We will study the improvement of the electromagnetic compatibility performances which can be brought by the choice of a static converters for industrial use. Methods. For the study of the path of the currents in common mode and in differential mode, it was possible to evaluate experimentally the electromagnetic compatibility impact in common mode and in differential mode of two boost converters connected in parallel in an electric circuit in connection with the source through a printed circuit board of connection between the source and the load, while using the two basic methods, namely the prediction of the conducted electromagnetic interference, the temporal simulation and the frequency simulation. Results. All the obtained results are validated by experimental measurements carried out at the Djillali Liabes University Sidi-Bel-Abbes in Laboratory of Applications of Plasma, Electrostatics and Electromagnetic Compatibility (APELEC). The experimental results obtained in common mode and in differential mode at low, medium and high frequencies are compared between the parallel boost test with and without electromagnetic compatibility filter.Документ Measurement and analysis of common and differential modes conducted emissions generated by an AC/DC converter(Національний технічний університет "Харківський політехнічний інститут", 2022) Zeghoudi, Abdelhakim ; Slimani, Helima; Bendaoud, Abdelber; Benazza, Baghdadi ; Bechekir, Seyfeddine; Miloudi, HoucineRectifiers are the most important converters in a very wide field: the transport of electrical energy in direct current and in the applications of direct current motors. In most electrical and electronic systems, rectifiers are non-linear loads made up of diodes, therefore they are a source of harmonic pollution at a base frequency with a distorting line current signal that generates electromagnetic interference. There are two disturbance modes: common mode and differential mode. These disturbances caused by the rapid variation of current and voltage as a function of time due to the switching of active components, passive components such as inductors, capacitors, coupling, etc. The purpose of this work is to study the conducted emissions generated by a rectifier connected to the Line Impedance Stabilizing Network in an electric circuit. The determination of these disturbances is done for firstly both common and differential modes at high frequency, and secondly harmonics current, line current at low frequency. The novelty of the proposed work consists in presenting a study of disturbance generated by rectifiers using simulation and also experimental measurements at low and high frequencies in order to compare the results. Methods. For the study of the disturbances conducted by the diode bridge converter (rectifier), the sources of conducted electromagnetic disturbances were presented in the first time. Then, the common and differential modes were defined. This converter was studied by LTspice Software for simulation and also experimental measurements at low frequency for harmonics current and high frequencies for disturbances in common and differential modes. Results. All the simulations were performed using the LTspice software and the results obtained are validated by experimental measurements performed in the APELEC laboratory at the University of Sidi Bel-Abbes in Algeria. The obtained results of conducted emissions at high frequency and total harmonics distortion of current at low frequency are compared between simulation and experiment.