Електротехніка і Електромеханіка

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894

Офіційний сайт http://eie.khpi.edu.ua/

Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.

Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).

Новини

Видання включене до Переліку наукових фахових видань України з технічних наук до найвищої категорії «А» згідно Наказу МОН України №1412 від 18.12.2018 р.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Multi-objective optimal power flow based gray wolf optimization method
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Mezhoud, Nabil ; Ayachi, Bilel ; Amarouayache, Mohamed
    One of predominant problems in energy systems is the economic operation of electric energy generating systems. In this paper, one a new evolutionary optimization approach, based on the behavior of meta-heuristic called grey wolf optimization is applied to solve the single and multi-objective optimal power flow and emission index problems. Problem. The optimal power flow are non-linear and non-convex very constrained optimization problems. Goal is to minimize an objective function necessary for a best balance between the energy production and its consumption, which is presented as a nonlinear function, taking into account of the equality and inequality constraints. Methodology. The grey wolf optimization algorithm is a nature inspired comprehensive optimization method, used to determine the optimal values of the continuous and discrete control variables. Practical value. The effectiveness and robustness of the proposed method have been examined and tested on the standard IEEE 30-bus test system with multi-objective optimization problem. The results of proposed method have been compared and validated with hose known references published recently. Originality. The results are promising and show the effectiveness and robustness of proposed approach.