Електротехніка і Електромеханіка

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894

Офіційний сайт http://eie.khpi.edu.ua/

Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.

Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).

Новини

Видання включене до Переліку наукових фахових видань України з технічних наук до найвищої категорії «А» згідно Наказу МОН України №1412 від 18.12.2018 р.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 10
  • Ескіз
    Документ
    Type-2 fuzzy logic controller-based maximum power point tracking for photovoltaic system
    (Національний технічний університет "Харківський політехнічний інститут", 2025) Boudia, A.; Messalti, S.; Zeghlache, S.; Harrag, A.
    Photovoltaic (PV) systems play a crucial role in converting solar energy into electricity, but their efficiency is highly influenced by environmental factors such as irradiance and temperature. To optimize power output, Maximum Power Point Tracking (MPPT) techniques are used. This paper introduces a novel approach utilizing a Type-2 Fuzzy Logic Controller (T2FLC) for MPPT in PV systems. The novelty of the proposed work lies in the development of a T2FLC that offers enhanced adaptability by managing a higher degree of uncertainty, we introduce an original method that calculates the error between the output voltage and a dynamically derived reference voltage, which is obtained using a mathematical equation. This reference voltage adjusts in real-time based on changes in environmental conditions, allowing for more precise and stable MPPT performance. The purpose of this paper is to design and validate the effectiveness of a T2FLC-based MPPT technique for PV systems. This approach seeks to enhance power extraction efficiency in response to dynamic environmental factors such as changing irradiance and temperature. The methods used in this study involve the implementation of T2FLC to adjust the duty cycle of a DC-DC converter for continuous and precise MPPT. The system was simulated under various environmental conditions, comparing the performance of T2FLC against T1FLC. The results show that the T2FLC MPPT system significantly outperforms traditional methods in terms of tracking speed, stability, and power efficiency. T2FLC demonstrated faster convergence to the MPP, reduced oscillations, and higher accuracy in rapidly changing environmental conditions. The findings of this study confirm the practical value of T2FLC logic in improving the efficiency and stability of PV systems, making it a promising solution for enhancing renewable energy technologies.
  • Ескіз
    Документ
    Improving the efficiency of a non-ideal grid coupled to a photovoltaic system with a shunt active power filter using a self-tuning filter and a predictive current controller
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Zorig, Assam; Babes, Badreddine; Hamouda, Noureddine; Mouassa, Souhil
    Recently, photovoltaic (PV) systems are increasingly favored for converting solar energy into electricity. PV power systems have successfully evolved from small, standalone installations to large-scale, grid-connected systems. When the nonlinear loads are connected to a grid-tied PV system, the power quality can deteriorate due to the active power supplied by the PV array, there’s a noticeable decline in the quality of power delivered to consumers. Its combination with the shunt active power filter (SAPF) enhances system efficiency. Consequently, this integrated system is adept at not only powering local loads but also at compensating for reactive power and filtering out harmonic currents from the main grid. The novelty of the work describes how an operation of a small scale PV system connected to the low voltage distribution system, and nonlinear load can be achieved, the investigation aims to analyze the system’s behavior and elucidate the advantages of employing various control algorithms. These proposed algorithms are designed to ensure a unity power factor for the utility grid while prioritizing high convergence speed and robustness against load power fluctuations across different levels of solar irradiation affecting the PV modules. The purpose of this work is to enhance the dynamic performance of the SAPF by cooperatively using a self-tuning filter (STF) based instantaneous active and reactive power method (PQ) with a novel predictive current control, enhance the system resilience, ensure optimal management of the total active power between the PV system, the electrical network and the non-linear load by integrating the functionalities of the SAPF under different levels of solar irradiation and maintain the DC-link capacitor voltage constant. Methods. A novel predictive current controller is designed to generate the switching signals piloted the three phase source voltage inverter, also a novel algorithm of instantaneous active and reactive power is developed, based on STF, to extract accurately the harmonic reference under non ideal grid voltage, also the perturb and observe algorithm is used to extract, under step change of solar irradiation, the maximum power point tracking of the PV module and the PI controller is used to maintain constant the DC-link capacitor voltage of the SAPF. Results. The efficacy of the proposed system is primarily centered on the grid side, and the performance evaluation of the control system is conducted using the STF based PQ algorithm and predictive current control. In addition, comprehensive testing encompasses all modes of operation, including scenarios involving distorted voltage sources, step changes in solar radiation, and variations in nonlinear loads. Results highlight superior performance in both transient and stable states, affirming the robustness and effectiveness of the proposed controllers. Practical value. The total harmonic distortion value of the grid current for all tests respects the IEEE Standard 519-1992.
  • Ескіз
    Документ
    Contribution of using a photovoltaic unified power quality conditioner in power quality improvement
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Bousnoubra, C.; Djeghader, Y.; Belila, H.
    With the increasing complexity of power systems and the integration of diverse energy sources, issues such as voltage sags, swells, and signal distortions have emerged as critical challenges. These power quality problems can result in equipment malfunction, production downtime, and financial losses for industries, as well as inconvenience and potential damage to electrical appliances in households. There is an urgent need for enhanced system efficiency. Methods. This objective is effectively achieved through the utilization of the newly proposed power theory, which is rooted in solar photovoltaic (PV) control, in conjunction with the Unified Power Quality Conditioner (UPQC). Purpose. The proposed method incorporates a modified synchronous reference frame scheme, coupled with a phase-locked loop mechanism. This control strategy enables the UPQC to effectively mitigate power quality issues. Novelty. PV-UPQC is utilized to uphold power integrity in the presence of diverse current and voltage distortions. This device, known as a multi-objective power conditioning apparatus, serves the purpose of maintaining power quality. PV-UPQC incorporates both a shunt and series voltage source converter, which are interconnected through a shared DC-link. Additionally, the PV system is interconnected at the DC-link of the UPQC in order to supply power to the load. Results. In this study, a novel approach is presented for controlling the UPQC, aiming to address power quality concerns such as unbalanced grid voltage and harmonic distortions and enabling us to control active and reactive power.
  • Ескіз
    Документ
    Photovoltaic fault diagnosis algorithm using fuzzy logic controller based on calculating distortion ratio of values
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Lahiouel, Younes; Latreche, Samia; Khemliche, Mabrouk; Boulemzaoud, Lokmane
    The efficiency of solar energy systems in producing electricity in a clean way. Reliance on it in industrial and domestic systems has led to the emergence of malfunctions in its facilities. During the operating period, these systems deteriorate, and this requires the development of a diagnostic system aimed at maintaining energy production at a maximum rate by detecting faults as soon as possible and addressing them. Goal. This work proposes the development of an algorithm to detect faults in the photovoltaic system, which based on fuzzy logic. Novelty. Calculate the distortion ratio of the voltage and current values resulting from each element in the photovoltaic system and processing it by the fuzzy logic controller, which leads to determining the nature of the fault. Results. As show in results using fuzzy logic control by calculating the distortion ratio of the voltage and current detect 12 faults in photovoltaic array, converter DC-DC and battery.
  • Ескіз
    Документ
    Intelligent cascaded adaptive neuro fuzzy interface system controller fed KY converter for hybrid energy based microgrid applications
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Sathish, Chindam; Chidambaram, Ilanji Akilandam; Manikandan, Mani
    Purpose. This article proposes a new control strategy for KY (DC-DC voltage step up) converter. The proposed hybrid energy system fed KY converter is utilized along with adaptive neuro fuzzy interface system controller. Renewable energy sources have recently acquired immense significance as a result of rising demand for electricity, rapid fossil fuel exhaustion and the threat of global warming. However, due to their inherent intermittency, these sources offer low system reliability. So, a hybrid energy system that encompasses wind/photovoltaic/battery is implemented in order to obtain a stable and reliable microgrid. Both solar and wind energy is easily accessible with huge untapped potential and together they account for more than 60 % of yearly net new electricity generation capacity additions around the world. Novelty. A KY converter is adopted here for enhancing the output of the photovoltaic system and its operation is controlled with the help of a cascaded an adaptive neuro fuzzy interface system controller. Originality. Increase of the overall system stability and reliability using hybrid energy system fed KY converter is utilized along with adaptive neuro fuzzy interface system controller. Practical value. A proportional integral controller is used in the doubly fed induction generator based wind energy conversion system for controlling the operation of the pulse width modulation rectifier in order to deliver a controlled DC output voltage. A battery energy storage system, which uses a battery converter to be connected to the DC link, stores the excess power generated from the renewable energy sources. Based on the battery’s state of charge, its charging and discharging operation is controlled using a proportional integral controller. The controlled DC link voltage is fed to the three phase voltage source inverter for effective DC to AC voltage conversion. The inverter is connected to the three phase grid via an LC filter for effective harmonics mitigation. A proportional integral controller is used for achieving effective grid voltage synchronization. Results. The proposed model is simulated using MATLAB/Simulink, and from the obtained outcomes, it is noted that the cascaded adaptive neuro fuzzy interface system controller assisted KY converter is capable of maintaining the stable operation of the microgrid with an excellent efficiency of 93 %.
  • Ескіз
    Документ
    Cascade sliding mode maximum power point tracking controller for photovoltaic systems
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Hessad, M. A.; Bouchama, Z.; Benaggoune, S.; Behih, K.
    Introduction. Constant increases in power consumption by both industrial and individual users may cause depletion of fossil fuels and environmental pollution, and hence there is a growing interest in clean and renewable energy resources. Photovoltaic power generation systems are playing an important role as a clean power electricity source in meeting future electricity demands. Problem. All photovoltaic systems have two problems; the first one being the very low electric-power generation efficiency, especially under low-irradiation states; the second resides in the interdependence of the amount of the electric power generated by solar arrays and the ever changing weather conditions. Load mismatch can occur under these weather varying conditions such that maximum power is not extracted and delivered to the load. This issue constitutes the so-called maximum power point tracking problem. Aim. Many methods have been developed to determine the maximum power point under all conditions. There are various methods, in most of them based on the well-known principle of perturb and observe. In this method, the operating point oscillates at a certain amplitude, no matter whether the maximum power point is reached or not. That is, this oscillation remains even in the steady state after reaching the maximum power point, which leads to power loss. This is an essential drawback of the previous method. In this paper, a cascade sliding mode maximum power point tracking control for a photovoltaic system is proposed to overcome above mentioned problems. Methodology. The photovoltaic system is mainly composed of a solar array, DC/DC boost converter, cascade sliding mode controller, and an output load. Two sliding mode control design strategies are joined to construct the proposed controller. The primary sliding mode algorithm is designed for maximum power point searching, i.e., to track the output reference voltage of the solar array. This voltage is used to manipulate the setpoint of the secondary sliding mode controller, which is used via the DC-DC boost converter to achieve maximum power output. Results. This novel approach provides a good transient response, a low tracking error and a very fast reaction against the solar radiation and photovoltaic cell temperature variations. The simulation results demonstrate the effectiveness of the proposed approach in the presence of environmental disturbances.
  • Ескіз
    Документ
    Photovoltaic system faults diagnosis using discrete wavelet transform based artificial neural networks
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Bengharbi, Abdelkader Azzeddine; Laribi, Saadi Souad; Allaoui, Tayeb; Mimouni, Amina
    Introduction. This research work focuses on the design and experimental validation of fault detection techniques in grid-connected solar photovoltaic system operating under Maximum Power Point Tracking mode and subjected to various operating conditions. Purpose. Six fault scenarios are considered in this study including partial shading, open circuit in the photovoltaic array, complete failure of one of the six IGBTs of the inverter and some parametric faults that may appear in controller of the boost converter. Methods. The fault detection technique developed in this work is based on artificial neural networks and uses discrete wavelet transform to extract the features for the identification of the underlying faults. By applying discrete wavelet transform, the time domain inverter output current is decomposed into different frequency bands, and then the root mean square values at each frequency band are used to train the neural network. Results. The proposed fault diagnosis method has been extensively tested on the above faults scenarios and proved to be very effective and extremely accurate under large variations in the irradiance and temperature.
  • Ескіз
    Документ
    Fault detection and monitoring of solar photovoltaic panels using internet of things technology with fuzzy logic controller
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Shweta, Raj; Sivagnanam, Sivaramalingam; Kumar, Kevin Ark
    Purpose. This article proposes a new control monitoring grid connected hybrid system. The proposed system, automatic detection or monitoring of fault occurrence in the photovoltaic application is extremely mandatory in the recent days since the system gets severely damaged by the occurrence of different faults, which in turn results in performance degradation and malfunctioning of the system. The novelty of the proposed work consists in presenting solar power monitoring and power control based Internet of things algorithm. In consideration to this viewpoint, the present study proposes the Internet of Things (IoT) based automatic fault detection approach, which is highly beneficial in preventing the system damage since it is capable enough to identify the emergence of fault on time without any complexities to generate Dc voltage and maintain the constant voltage for grid connected hybrid system. Methods. The proposed DC-DC Boost converter is employed in this system to maximize the photovoltaic output in an efficient manner whereas the Perturb and Observe algorithm is implemented to accomplish the process of maximum power point tracking irrespective of the changes in the climatic conditions and then the Arduino microcontroller is employed to analyse the faults in the system through different sensors. Eventually, the IoT based monitoring using fuzzy nonlinear autoregressive exogenous approach is implemented for classifying the faults in an efficient manner to provide accurate solution of fault occurrence for preventing the system from failure or damage.
  • Ескіз
    Документ
    Single phase transformerless inverter for grid connected photovoltaic system with reduced leakage current
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Janardhan, Gurram; Surendra Babu, N. N. V.; Srinivas, G. N.
    Transformerless inverters are of vital importance in the field of grid connected solar photovoltaic systems offering higher efficiency than the conventional one. i.e., using transformer. General grid connected inverters are constituting of transformers requires more area besides the loss in them. Problem. Eliminating transformers can cause leakage current due to the variation of common mode voltage which in turn due to parasitic capacitance effect. Research literature in transformerless inverters has addressed the problems of common mode leakage current issues by offering the study of different inverter topologies like H4, H5, H6 and HERIC etc. utilizing variety of modulation strategies like unipolar, bipolar pulse width modulations. Goal. The paper significantly presents a new transformerless inverter topology, analyzes common mode voltage and leakage current behavior of the system. The simulation is carried out for comparing the leakage current profiles with other transformerless inverter topologies in literature. Novelty. This paper gives an impression of the efficient transformerless inverter for grid connected photovoltaic system. Results. The various inverter topologies full bridge with different pulse width modulation techniques are analyzed and to determine the common mode voltages and leakage currents.
  • Ескіз
    Документ
    Improvement of power quality in grid-connected hybrid system with power monitoring and control based on internet of things approach
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Balakishan, Padakanti ; Chidambaram, Ilanji Akilandam; Manikandan, Mani
    This article proposes a new control monitoring grid connected hybrid system. The proposed system, improvement of power quality is achieved with internet of things power monitoring approach in solar photovoltaic grid system network. The novelty of the proposed work consists in presenting solar power monitoring and power control based internet of things algorithm, to generate DC voltage and maintain the constant voltage for grid connected hybrid system. Methods. The proposed algorithm which provides sophisticated and cost-effective solution for measuring the fault and as maximum power point tracking assures controlled output and supports the extraction of complete power from the photovoltaic panel. The objective of the work is to monitor and control the grid statistics for reliable and efficient delivery of power to a hybrid power generation system. Internet of things is regarded as a network comprising of electronic embedded devices, physical objects, network connections, and sensors enabling the sensing, analysis, and exchange of data. The proposed control technique strategy is validated using MATLAB/Simulink software and real time implementation to analysis the working performances. Results. The results obtained show that the power quality issue, the proposed system to overcome through monitoring of fault solar panel and improving of power quality. The obtained output from the hybrid system is fed to the grid through a 3ϕ voltage source inverter is more reliable and maintained power quality. The power obtained from the entire hybrid setup is measured by the sensor present in the internet of things-based module. In addition to that, the photovoltaic voltage is improved by a boost converter and optimum reliability is obtained with the adoption of the perturb & observe approach. The challenges in the integration of internet of things – smart grid must be overcome for the network to function efficiently. Originality. Compensation of power quality issues, grid stability and harmonic reduction in distribution network by using photovoltaic based internet of things approach is utilized along with sensor controller. Practical value. The work concerns a network comprising of electronic embedded devices, physical objects, network connections, and sensors enabling the sensing, analysis, and exchange of data. In this paper, internet of things sensors are installed in various stages of the smart grid in a hybrid photovoltaic – wind system. It tracks and manages network statistics for safe and efficient power delivery. The study is validated by the simulation results based on MATLAB/Simulink software and real time implementation.