Електротехніка і Електромеханіка

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894

Офіційний сайт http://eie.khpi.edu.ua/

Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.

Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).

Новини

Видання включене до Переліку наукових фахових видань України з технічних наук до найвищої категорії «А» згідно Наказу МОН України №1412 від 18.12.2018 р.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Tilt-fractional order proportional integral derivative control for DC motor using particle swarm optimization
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Amieur, Toufik; Taibi, Djamel; Kahla, Sami; Bechouat, Mohcene; Sedraoui, Moussa
    Introduction. Recently, the most desired goal in DC motor control is to achieve a good robustness and tracking dynamic of the setpoint reference speed of the feedback control system. Problem. The used model should be as general as possible and consistently represent systems heterogeneous (which may contain electrical, mechanical, thermal, magnetic and so on). Goal. In this paper, the robust tilt-fractional order proportional integral derivative control is proposed. The objective is to optimize the controller parameters from solving the criterion integral time absolute error by particle swarm optimization. The control strategy is applied on DC motor to validate the efficiency of the proposed idea. Methods. The proposed control technique is applied on DC motor where its dynamic behavior is modeled by external disturbances and measurement noises. Novelty. The proposed control strategy, the synthesized robust tilt-fractional order proportional integral derivative speed controller is applied on the DC motor. Their performance and robustness are compared to those provided by a proportional integral derivative and fractional order proportional integral derivative controllers. Results. This comparison reveals superiority of the proposed robust tilt-fractional order proportional integral derivative speed controller over the remaining controllers in terms of robustness and tracking dynamic of the set-point reference speed with reduced control energy.
  • Ескіз
    Документ
    Fuzzy model based multivariable predictive control design for rapid and efficient speed-sensorless maximum power extraction of renewable wind generators
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Babes, Badreddine; Hamouda, Noureddine; Kahla, Sami; Amar, Hichem; Ghoneim, S. S. M.
    A wind energy conversion system needs a maximum power point tracking algorithm. In the literature, several works have interested in the search for a maximum power point wind energy conversion system. Generally, their goals are to optimize the mechanical rotation or the generator torque and the direct current or the duty cycle switchers. The power output of a wind energy conversion system depends on the accuracy of the maximum power tracking controller, as wind speed changes constantly throughout the day. Maximum power point tracking systems that do not require mechanical sensors to measure the wind speed offer several advantages over systems using mechanical sensors. The novelty. The proposed work introduces an intelligent maximum power point tracking technique based on a fuzzy model and multivariable predictive controller to extract the maximum energy for a small-scale wind energy conversion system coupled to the electrical network. The suggested algorithm does not need the measurement of the wind velocity or the knowledge of turbine parameters. Purpose. Building an intelligent maximum power point tracking algorithm that does not use mechanical sensors to measure the wind speed and extracts the maximum possible power from the wind generator, and is simple and easy to implement. Methods. In this control approach, a fuzzy system is mainly utilized to generate the reference DC-current corresponding to the maximum power point based on the changes in the DC-power and the rectified DC-voltage. In contrast, the fuzzy model-based multivariable predictive regulator follows the resultant reference current with minimum steady-state error. The significant issues of the suggested maximum power point tracking method, such as the detailed design process and implementation of the two controllers, have been thoroughly investigated and presented. The considered maximum power point tracking approach has been applied to a wind system driving a 5 kW permanent magnet synchronous generator in variable speed mode through the simulation tests. Practical value. A practical implementation has been executed on a 5 kW test bench consisting of a dSPACEds1104 controller board, permanent magnet synchronous generator, and DC-motor drives to confirm the simulation results. Comparative experimental results under varying wind speed have confirmed the achievable significant performance enhancements on the maximum wind energy generation and overall system response by using the suggested control method compared with a traditional proportional integral maximum power point tracking controller.