Електротехніка і Електромеханіка
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/62894
Журнал публікує оригінальні результати досліджень з аналітичного, чисельного та мультифізичного методів моделювання електрофізичних процесів в електротехнічних електромеханічних та електроенергетичних установках та системах, з розробки нових електротехнічних пристроїв і систем з поліпшеними техніко-економічними та екологічними показниками в таких сферах, як: теоретична електротехніка, інженерна електрофізика, техніка сильних електричних та магнітних полів, електричні машини та апарати, електротехнічні комплекси та системи, силова електроніка, електроізоляційна та кабельна техніка, електричний транспорт, електричні станції, мережі і системи, безпека електрообладнання.
Рік заснування: 2002. Періодичність: 6 разів на рік. ISSN 2074-272X (Print), ISSN 2309-3404 (Online).
Новини
Переглянути
Результати пошуку
Документ Wild horse optimization algorithm implementation in 7-level packed U-cell multilevel inverter to mitigate total harmonic distortion(Національний технічний університет "Харківський політехнічний інститут", 2024) Ebrahimi, F.; Windarko, N. A.; Gunawan, A. I.Multilevel inverters (MLIs) are a popular industrial and, more especially, renewable energy application solution. This is because of its appetite for filters, low distortion class, and capacity to provide a multilayer output voltage that resembles a pure sine waveform. The novelty is in applying the wild horse optimization algorithm (WHOA) to adjust the sinusoidal pulse width modulation (SPWM) technique by producing the optimal reference signal parameters in a new multilevel inverter architecture known as the packed U-cell multilevel inverter (PUC-MLI). Purpose. This study helps with the idea of new inverter architecture and a modified pulse width modulation (MPWM) method to make the multilevel inverter smaller, cheaper, and with less total harmonic distortion (THD). Methods. We use the proposed approach to control a 7-level, single-phase PUC-MLI. The WHOA is used to discover the optimal parameters of the additional reference sine signal after being compared with SPWM to evaluate its performance in harmonic reduction. The simulation’s outcome was validated by building a PUC-MLI prototype. Results. Experimental results and simulations validate the effectiveness of the suggested approach. The WHOA-improved MPWM approach achieves a significant reduction in THD on the PUC-MLI output voltage, as indicated by the results. Practical value. THD in MLI output voltage will be reduced without spending any cost. The suggested solution works with many MLI topologies with varying output voltage levels.Документ Total harmonic distortion analysis of inverter fed induction motor drive using neuro fuzzy type-1 and neuro fuzzy type-2 controllers(Національний технічний університет "Харківський політехнічний інститут", 2024) Srinivas, G.; Durga Sukumar, G.; Subbarao, M.Introduction. When the working point of the indirect vector control is constant, the conventional speed and current controllers operate effectively. The operating point, however, is always shifting. In a closed-system situation, the inverter measured reference voltages show higher harmonics. As a result, the provided pulse is uneven and contains more harmonics, which enables the inverter to create an output voltage that is higher. Aim. A space vector modulation (SVM) technique is presented in this paper for type-2 neuro fuzzy systems. The inverter’s performance is compared to that of a neuro fuzzy type-1 system, a neuro fuzzy type-2 system, and classical SVM using MATLAB simulation and experimental validation. Methodology. It trains the input-output data pattern using a hybrid-learning algorithm that combines back-propagation and least squares techniques. Input and output data for the proposed technique include information on the rotation angle and change of rotation angle as input and output of produced duty ratios. A neuro fuzzy-controlled induction motor drive’s dynamic and steady-state performance is compared to that of the conventional SVM when using neuro fuzzy type-2 SVM the induction motor, performance metrics for current, torque, and speed are compared to those of neuro fuzzy type-1 and conventional SVM. Practical value. The performance of an induction motor created by simulation results are examined using the experimental validation of a dSPACE DS-1104. For various switching frequencies, the total harmonic distortion of line-line voltage using neuro fuzzy type-2, neuro fuzzy type-1, and conventional based SVMs are provided. The 3 hp induction motor in the lab is taken into consideration in the experimental validations. References 22, tables 3, figures 15.Документ Performance investigations of five-level reduced switches count Η-bridge multilevel inverter(Національний технічний університет "Харківський політехнічний інститут", 2023) Parimalasundar, Ezhilvannan; Muthukaruppasamy, S.; Dharmaprakash, R.; Suresh, KrishnanThis research paper describes a simple five-level single-phase pulse-width modulated inverter topology for photovoltaic grid applications. Multilevel inverters, as opposed to conventional two-level inverters, include more than two levels of voltage while using multiple power switches and lower-level DC voltage levels as input to produce high power, easier, and less modified oscillating voltage. The H-bridge multilevel inverter seems to have a relatively simple circuit design, needs minimal power switching elements, and provides higher efficiency among various types of topologies for multi-level inverters that are presently accessible. Nevertheless, using more than one DC source for more than three voltage levels and switching and conduction losses, which primarily arise in major power switches, continue to be a barrier. The novelty of the proposed work consists of compact modular inverter configuration to connect a photovoltaic system to the grid with fewer switches. Purpose. The proposed system aims to decrease the number of switches, overall harmonic distortions, and power loss. By producing distortion-free sinusoidal output voltage as the level count rises while lowering power losses, the constituted optimizes power quality without the need for passive filters. Methods. The proposed topology is implemented in MATLAB/Simulink with gating pulses and various pulse width modulation technique. Results. With conventional topology, total harmonic distortion, power switches, output voltage, current, power losses, and the number of DC sources are investigated. Practical value. The proposed topology has proven to be extremely useful for deploying photovoltaic-based stand-alone multilevel inverters in grid applications.Документ Frequency analysis of stator currents of an induction motor controlled by direct torque control associated with a fuzzy flux estimator(Національний технічний університет "Харківський політехнічний інститут", 2023) Mabrouk, Y. A.; Mokhtari, B.; Allaoui, TayebThe best way to control the torque of an induction motor is conventional direct torque control (DTC); this control method is the most used approach in the industrial sector due to its many advantages. Its main advantages are its simplicity and its exclusive dependence on the stator resistance of the induction motor. However, the use of hysteresis comparators reduces its effectiveness, causing more torque ripple. Additionally, this results in variable operating frequency and limited frequency sampling, resulting in pseudo-random overshoot of the hysteresis band. Purpose. For these reasons, this article presents a new study aimed at confirming its shortcomings and improving the effectiveness of the control. Novelty. We propose to use fuzzy logic methods to estimate the two components of the stator flux. Methods. In traditional DTC the flux components are estimated from an equation relating the stator resistance to the stator voltage and current. In the proposed method, only stator currents and voltages are used for this evaluation, which eliminates the dependence of DTC on stator resistance. The aim of this proposal is to make DTC robust to parametric changes. Results. General harmonic distortions, rotational speed of the induction motor, electromagnetic moment, magnetic flux and stator currents are analyzed. Practical value. With this proposed technique, validated in Simulink/MATLAB, several improvements in motor behavior and control are endorsed: torque fluctuations are reduced, overshoot is completely eliminated, and total harmonic distortion is significantly reduced by 48.31 % for stator currents. This study also confirmed the robustness of DTC to changes in stator resistance.Документ Mitigation of harmonics for five level multilevel inverter with fuzzy logic controller(Національний технічний університет "Харківський політехнічний інститут", 2023) Sujatha, M. S.; Sreelakshmi, S.; Parimalasundar, Ezhilvannan; Suresh, KrishnanThe advantages of a high-power quality waveform and a high voltage capability of multilevel inverters have made them increasingly popular in recent years. These inverters reduce harmonic distortion and improve the voltage output. Realistically speaking, as the number of voltage levels increases, so does the quality of the multilevel output-voltage waveform. When it comes to industrial power converters, these inverters are by far the most critical. Novelty. Multilevel cascade inverters can be used to convert multiple direct current sources into one direct current. These inverters have been getting a lot of attention recently for high-power applications. A cascade H-bridge multilevel inverter controller is proposed in this paper. A change in the pulse width of selective pulse width modulation modulates the output of the multilevel cascade inverter. Purpose. The total harmonic distortion can be reduced by using filters on controllers like PI and fuzzy logic controllers. Methods. The proposed topology is implemented with MATLAB/Simulink, using gating pulses and pulse width modulation methodology and fuzzy logic controllers. Moreover, the proposed model also has been validated and compared to the hardware system. Results. Total harmonic distortion, number of power switches, output voltage and number of DC sources are analyzed with conventional topologies. Practical value. The proposed topology has been very supportive for implementing photovoltaic based multilevel inverter, which is connected to large demand in grid and industry.Документ Investigation of efficient multilevel inverter for photovoltaic energy system and electric vehicle applications(Національний технічний університет "Харківський політехнічний інститут", 2023) Parimalasundar, Ezhilvannan; Jayanthi, Ramalingam; Suresh, Krishnan; Sindhuja, RamachandranThis research presents a simple single-phase pulse-width modulated 7-level inverter topology for renewable system which allows home-grid applications with electric vehicle charging. Although multilevel inverters have appealing qualities, their vast range of application is limited by the use of more switches in the traditional arrangement. As a result, a novel symmetrical 7-level inverter is proposed, which has the fewest number of unidirectional switches with gate circuits, providing the lowest switching losses, conduction losses, total harmonic distortion and higher efficiency than conventional topology. The novelty of the proposed work consists of a novel modular inverter structure for photovoltaic energy system and electric vehicle applications with fewer numbers of switches and compact in size. Purpose. The proposed system aims to reduce switch count, overall harmonic distortions, and power loss. There are no passive filters required, and the constituted optimizes power quality by producing distortion-free sinusoidal output voltage as the level count increases while reducing power losses. Methods. The proposed topology is implemented with MATLAB/Simulink, using gating pulses and various pulse-width modulation methodologies. Moreover, the proposed model also has been validated and compared to the hardware system. Results. Total harmonic distortion, number of power switches, output voltage, current, power losses and number of DC sources are investigated with conventional topology. Practical value. The proposed topology has proven to be extremely beneficial for implementing photovoltaic-based stand-alone multilevel inverter and electric vehicle charging applications.Документ Fault diagnosis in a five-level multilevel inverter using an artificial neural network approach(Національний технічний університет "Харківський політехнічний інститут", 2023) Parimalasundar, Ezhilvannan; Senthil Kumar, Ramanathan; Chandrika, Vanitha Selvaraj; Suresh, KrishnanIntroduction. Cascaded H-bridge multilevel inverters (CHB-MLI) are becoming increasingly used in applications such as distribution systems, electrical traction systems, high voltage direct conversion systems, and many others. Despite the fact that multilevel inverters contain a large number of control switches, detecting a malfunction takes a significant amount of time. In the fault switch configurations diode included for freewheeling operation during open-fault condition. During short circuit fault conditions are carried out by the fuse, which can reveal the freewheeling current direction. The fault category can be identified independently and also failure of power switches harmed by the functioning and reliability of CHB-MLI. This paper investigates the effects and performance of open and short switching faults of multilevel inverters. Output voltage characteristics of 5 level MLI are frequently determined from distinctive switch faults with modulation index value of 0.85 is used during simulation analysis. In the simulation experiment for the modulation index value of 0.85, one second open and short circuit faults are created for the place of faulty switch. Fault is identified automatically by means of artificial neural network (ANN) technique using sinusoidal pulse width modulation based on distorted total harmonic distortion (THD) and managed by its own. The novelty of the proposed work consists of a fast Fourier transform (FFT) and ANN to identify faulty switch. Purpose. The proposed architecture is to identify faulty switch during open and short failures, which has to be reduced THD and make the system in reliable operation. Methods. The proposed topology is to be design and evaluate using MATLAB/Simulink platform. Results. Using the FFT and ANN approaches, the normal and faulty conditions of the MLI are explored, and the faulty switch is detected based on voltage changing patterns in the output. Practical value. The proposed topology has been very supportive for implementing non-conventional energy sources based multilevel inverter, which is connected to large demand in grid.Документ Power quality enhancement using active power filter five-level cascade H-bridge under unbalanced and distorted grid(Національний технічний університет "Харківський політехнічний інститут", 2023) Guergah, Manel; Nebti, Khalil; Rezgui, Salah Eddine; Benalla, Hocine; Ould-Abdeslam, Djaffar OuidIntroduction. To improve the power quality of a supply system, the total harmonic distortion (THD) is the most important parameter in the quantification of harmonics caused by nonlinear loads. In practice, it must be less than 5 %. The novelty of the proposed work consists in the use of a cascaded five level active filter, when the converter consisting of six H-bridge pairs, each one includes four transistors. Purpose. To increase the efficiency of this filter, two techniques for quantification of harmonic currents are proposed, first the PQ-theory which is simple but can only be used in case of a balanced grid, and second the synchronous reference frame theory (SFR-theory), which is capable of creating harmonic current not only in an unbalanced grid, but also in an unbalanced and distorted beam. Methods. Using the control techniques, the harmonic current is extracted from load current and considered as a reference. The constructed current should follow this reference. Results. The estimation of the active and reactive powers is based on the measurement of the currents crossing the load and the network voltages, these powers are used to determine the shape of the harmonic (reference) current. Using the PI regulator, the output current of the five-level inverter follows the reference current perfectly. The inverters output current is injected into the grid to eliminate harmonic currents. Practical value. In practice, the harmonic distortion rate THD is the most widely used criterion for criticizing the waveform of the currents and judging the quality of the energy involved. For currents on the source side, the THD is considered acceptable if it is less than 5 %, in our proposal the THD is 0.85 % with the PQ-theory and 2.34 % with SFR-theory, so it is optimal.Документ Performance investigation of modular multilevel inverter topologies for photovoltaic applications with minimal switches(Національний технічний університет "Харківський політехнічний інститут", 2022) Parimalasundar, Ezhilvannan; Kumar, Nathella Munirathnam Giri; Geetha, Prahalathan; Suresh, KrishnanIntroduction. In recent years, a growing variety of technical applications have necessitated the employment of more powerful equipment. Power electronics and megawatt power levels are required in far too many medium voltage motor drives and utility applications. It is challenging to incorporate a medium voltage grid with only one power semiconductor that has been extensively modified. As a result, in high power and medium voltage settings, multiple power converter structure has been offered as a solution. A multilevel converter has high power ratings while also allowing for the utilization of renewable energy sources. Renewable energy sources such as photovoltaic, wind, and fuel cells may be readily connected to a multilevel inverter topology for enhanced outcomes. The novelty of the proposed work consists of a novel modular inverter structure for solar applications that uses fewer switches. Purpose. The proposed architecture is to decrease the number of switches and Total Harmonic Distortions. There is no need for passive filters, and the proposed design enhances power quality by creating distortion-free sinusoidal output voltage as the level count grows while also lowering power losses.Документ Determination of the input filter parameters of the active rectifier with a fixed modulation frequency(Національний технічний університет "Харківський політехнічний інститут", 2022) Krylov, D. S.; Kholod, O. I.Development of a methodology for calculating the parameters of the active rectifier-voltage source input filter operating with a fixed modulation frequency to ensure electromagnetic compatibility with the supply network acceptable by standards at minimum values of the input inductance and checking its main characteristics on a mathematical model. Methodology. The authors have developed a methodology for calculating the parameters of the input filter of an active rectifier-voltage source. The calculation results are verified on the constructed mathematical model of a frequency converter, the scheme of which is an active rectifier and an autonomous voltage inverter. A series of experiments was carried out on a mathematical model to study the dependence of the total harmonic distortion of current and mains voltage on the value of the input inductance for various parameters of the input filter. Results. The structure and calculation procedure the input filter of an active rectifier operating with a fixed modulation frequency are proposed. The simulation results showed that the inclusion of a filter at the input of the active rectifier significantly improves its electromagnetic compatibility with the supply network in the entire range of variation of the input inductance of the circuit and makes it possible to achieve the values of the total harmonic distortion permissible by the norms. Originality. A structure and a calculation procedure the input filter of an active rectifier-voltage source operating with a fixed modulation frequency are proposed. Practical significance. The dependencies obtained in the article allow us to evaluate the relationship between the parameters of the filter elements and its characteristics among themselves and come to a compromise between them when designing a scheme for specific technical conditions.