Вісник Національного технічного університету «ХПІ». Серія: Системний аналіз, управління та інформаційні технології

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/67239

Офіційний сайт http://samit.khpi.edu.ua/

Рецензоване наукове видання відкритого доступу, яке публікує нові наукові результати в області системного аналізу та управління складними системами, отримані на основі сучасних прикладних математичних методів і прогресивних інформаційних технологій. Публікуються роботи, пов'язані зі штучним інтелектом, аналізом великих даних, сучасними методами високопродуктивних обчислень у розподілених системах підтримки прийняття рішень.

Рік заснування: 1961. Періодичність: 2 рази на рік. ISSN: 2079-0023 (Print), ISSN: 2410-2857 (Online)

Новини

«Вісник Національного технічного університету "ХПІ". Серія: Системний аналіз, управління та інформаційні технології» внесено до категорії Б «Переліку наукових фахових видань України, в яких можуть публікуватися результати дисертаційних робіт на здобуття наукових ступенів доктора наук, кандидата наук та ступеня доктора філософії»

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Examining software quality concept: business analysis perspective
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Gobov, Denys Andriyovych; Zuieva, Oleksandra Valerivna
    Software quality is a critical aspect of software development that significantly impacts business performance and customer satisfaction. However, defining software quality can be challenging, as different sources provide various definitions and perspectives. The article presents a literature review of software quality, acknowledging an ongoing debate over the years regarding the definition of software quality and the methods used for its assessment. Among all the different ideas about software quality, the article highlights key concepts that are crucial in understanding software quality: meeting requirements, satisfying users, using software features, and spotting defects. The article also checks out international standards like ISO/IEC 25010:2011 and ISO/IEC 5055:2021, introducing terms such as "Quality in use" and "Structural Quality." Unveiling a tripartite perspective elucidated in international standards—internal quality, external quality, and quality in use - the article underscores the intricate interplay between subjectivity and objectivity. The subjective dimension, influenced by user perception and contextual factors, is juxtaposed with more objective criteria such as conformance to requirements and the absence of defects. The standards provide helpful perspectives, but the human side of things, like user feelings and specific contexts, makes finding a universal definition tricky. The pivotal role of business analysis and requirements engineering in ensuring software quality is underscored. Business requirements, stakeholder needs, and the quality of functional and non-functional requirements emerge as integral components. The article argues that software quality is intricately tied to the quality of its requirements, presenting a dual perspective: compliance with quality criteria and alignment with stakeholders' expectations and business goals. Practical software quality assessment is built upon the foundational understanding of contextual nuances, user needs, and operational conditions, all discerned through business analysis.
  • Ескіз
    Документ
    Parsimonious machine learning models in requirements elicitation techniques selection
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Solovei, Olga Leonidivna; Gobov, Denys Andriyovych
    The subject of research in the article is machine learning algorithms used for requirement elicitation technique selection. The goal of the work is to build effective parsimonious machine learning models to predict the using particular elicitation techniques in IT projects that allow using as few predictor variables as possible without a significant deterioration in the prediction quality. The following tasks are solved in the article: design an algorithm to build parsimonious machine learning candidate models for requirement elicitation technique selection based on gathered information on practitioners' experience, assess parsimonious machine learning model accuracy, and design an algorithm for the best candidate model selection. The following methods are used: algorithm theory, statistics theory, sampling techniques, data modeling theory, and science experiments. The following results were obtained: 1) parsimonious machine learning candidate models were built for the requirement elicitation technique selection. They included less number of features that helps in the future to avoid overfitting problems associated with the best-fit models; 2) according to the proposed algorithm for best candidate selection – a single parsimonious model with satisfied performance was chosen. Conclusion: An algorithm is proposed to build parsimonious candidate models for requirement elicitation technique selection that avoids the overfitting problem. The algorithm for the best candidate model selection identifies when a parsimonious model's performance is degraded and decides on the suitable model's selection. Both proposed algorithms were successfully tested with four datasets and can be proposed for their extensions to others.