Інтегровані технології та енергозбереження
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/65760
В публікаціях журналу виконується аналіз розвитку енергетики та сучасних методів енергозбереження. Розглядаються питання та проблеми сучасної енергетики, енерготехнології енергоємних галузей промисловості; нетрадиційної енергетики, ресурсозбереження; питання моделювання процесів промислового обладнання, процеси та обладнання різноманітних галузей промисловості (хімічної, харчової, комунальної енергетики, медичного обладнання тощо); питання автоматизованих систем управління та обробки інформації, тепло- та масообмінні процеси та обладнання спеціальної техніки; питання та проблеми електроенергетики та енергетичного менеджменту.
Рік заснування: 1998. Періодичність: 4 рази на рік.
Новини
Переглянути
Результати пошуку
Документ Сучасні та інноваційні технології навчання студентів медичних спеціальностей в області безпекових дисциплін та енергозбереження(Національний технічний університет "Харківський політехнічний інститут", 2024) Масікевич, Андроій Юрійович; Лебедєв, Володимир Володимирович; Горбунов, Костянтин Олександрович; Моісеєв, В. Ф.У статті показані дослідження з вивчення сучасних та інноваційних технології навчання в області екологічної безпеки, енергозбереження та підвищення енергетичної ефективності. Показано, що при реалізації освіти студентів-медиків необхідно підвищити якість освіти шляхом створення інноваційної системи підготовки на основі акцентованого навчання за темами, які є найбільш актуальними в області екологічної безпеки та енергозбереження для різних напрямків, уникаючи при цьому зайвої інформації, яку студент-медик повинен отримувати самостійно. Для вирішення цього системного завдання необхідно у навчальному процесі реалізовувати сучасні освітні технології. Для ефективного формування компетенцій з напряму навчання було визначено когнітивні цілі управління професійною підготовкою щодо формування основ екологічної безпеки та енергозбереження у студентів-медиків. Для досягнення визначених когнітивних цілей пропонується застосування таких інноваційних технологій навчання: технології постановки ситуаційної та кейс-завдання, технології висування гіпотез та обґрунтування обраного шляху вирішення проблеми з використанням методу мінімаксу, технології проектно-аналітичного аналізу з використанням методу хакатону.Документ Визначення умов теплообміну при охолодженні високотемпературної поверхні(Національний технічний університет "Харківський політехнічний інститут", 2024) Селіхов, Юрій Анатолійович; Горбунов, Костянтин Олександрович; Пономаренко, Ганна Володимирівна; Нагорний, Е. Р.; Пільник, І. В.; Рись, В. Г.У даній роботі представлена математична модель визначення температурного поля спеціально розробленого стрижня термозонда та методика вирішення граничної оберненої задачі теплопровідності (ОЗТ), яка зводиться до визначення теплових потоків та коефіцієнтів тепловіддачі за даними експериментальних вимірювань температур в одній або кількох внутрішніх точках. Величина теплового потоку та коефіцієнта тепловіддачі на робочому торці стрижня термозонда при охолодженні його рідиною визначатиметься в результаті рішення ОЗТ. Саме рішення виконуватиметься прямим методом, а його реалізація здійснюватиметься чисельним способом.Документ Модифікований числовий метод визначення параметрів гідравлічних систем для розробки математичних моделей та інформаційних комплексів комп'ютерних імітаційних моделей промислових хімічних виробництв(Національний технічний університет "Харківський політехнічний інститут", 2024) Пономаренко, Євгенія Дмитрівна; Миронов, Антон Миколайович; Ільченко, Марія Володимирівна; Горбунов, Костянтин Олександрович; Биканов, Сергій Миколайович; Пономаренко, Ганна Володимирівна; Соловей, Людмила ВалентинівнаУ статті представлено модифікований числовий метод визначення параметрів гідравлічних систем, що знаходять застосування при створенні математичних моделей та інформаційно-імітаційних комплексів для моделювання хімічних виробництв. Запропонований метод базується на перетворенні нелінійної системи рівнянь на задачу оптимізації. Для мінімізації відхилення між початковими наближеннями та розрахунковими параметрами використовується метод Нелдера-Міда, який не вимагає градієнтів та використовує просту геометричну трансформацію симплекса. Перевагою методу є його універсальність та можливість адаптації до складних систем. Виявлено, що метод дозволяє точно моделювати параметри системи в стаціонарних режимах і визначати критичні точки оптимізації. Таким чином, запропонований підхід має потенціал для застосування в проекту- ванні та експлуатації промислових хімічних установок. Це рішення значно спрощує процеси побудови математичних моделей, підвищує їхню надійність та прискорює імі- таційне моделювання, сприяючи підвищенню ефективності управління технологічними процесами.Документ Методика експериментального дослідження локальних умов нестаціонарного теплообміну(Національний технічний університет "Харківський політехнічний інститут", 2024) Селіхов, Юрій Анатолійович; Горбунов, Костянтин Олександрович; Школьнікова, Тетяна Василівна; Пільник, І. В.Поставлене завдання дослідження умов теплообміну розпиленої рідини – води з різними концентраціями поверхнево-активних речовин із високотемпературною поверхнею визначило низку завдань, які необхідно вирішити. Два завдання: розробка засобів експериментального дослідження нестаціонарних локальних умов теплообміну високотемпературної поверхні з розпиленою рідиною з урахуванням можливості реалізації зміни рівня визначальних факторів у діапазоні відповідних їх реальних значень у натурних об'єктах енергетики та металургії та завдання вибору методу ідентифікації граничних умов теплообміну на наш погляд є головними. Аналіз наукових публікацій та наші власні дослідження дозволили встановити, що центральним фактором, що впливає на локальні умови теплообміну, є локальна щільність зрошення, яка стала б одним із факторів для розробки ефективних систем охолодження, або для визначення теплового стану об'єкта при різних зовнішніх впливах. Наступним завданням дослідження є дослідження інтенсивності теплообміну в функції недогріву розпиленої рідини - води з різними концентраціями поверхнево-активних речовин при різних локальних щільностях зрошення і температурах поверхні. Оскільки ми розглядаємо багатофакторну задачу, то сучасні вимоги теорії планування експерименту дали можливість розробити методику експериментального дослідження локальних умов нестаціонарного теплообміну, що дозволить нам провести дослідження граничних умов теплообміну в функції взаємопов'язаного впливу щільності зрошення, температури поверхні, швидкості і кута натікання розпиленої рідини на поверхню. Розроблена методика проведення вимірювань дозволить нам отримати достовірні результати досліджень. Вирішення зворотного завдання теплопровідності дозволить встановити ступінь впливу практично всіх факторів, зазначених як визначальні. Очевидно, що при цьому вивчення граничних умов теплообміну функції швидкості руху високотемпературної поверхні виливається у велике самостійне завдання.Документ Інтеграція теплообміну високотемпературної поверхні(Національний технічний університет "Харківський політехнічний інститут", 2024) Селіхов, Юрій Анатолійович; Рищенко, Ігор Михайлович; Горбунов, Костянтин Олександрович; Нагорний, Е. Р.Незважаючи на дискретний характер взаємодії крапель розпиленої рідини з високотемпературною поверхнею, неминуче утворення плівки рідини призводить до того, що основні якісні закономірності теплообміну, що маємо при цьому, виявляються характерними для відомого процесу теплообміну при кипінні. Разом з тим, наявність великих теоретичних та експериментальних досліджень «кипіння у великому обсязі» та процесу генерування пари в каналах не дозволяє встановити умови теплообміну при термічній взаємодії диспергованої рідини - води з різними концентраціями поверхнево-активних речовин з високотемпературною поверхнею. У науковій літературі ми не знайшли матеріалів про цей процес. При цілій низці особливостей, загальних з вищезазначеними двома випадками теплообміну (наявність криз кипіння, плівкового та бульбашкового режимів і т.д.), охолодження високотемпературної поверхні краплинним середовищем, що має у своєму складі різні концентрації поверхнево-активних речовин, має суттєві відмінні риси, зумовлені особливостями гідродинаміки процесу, що є предметом подальшого вивчення. Для повного дослідження вищезазначеної задачі необхідно виконати таке: 1. Розробити методику експериментального дослідження локальних умов нестаціонарного теплообміну розпорошеної рідини - води з різними концентраціями поверхнево-активних речовин. 2. Потрібно розробити та виготовити експериментальний стенд, на якому будуть виконуватись дослідження впливу щільності зрошення, температури поверхні, ступеня недогріву рідини, її швидкості та кута натікання на поверхню. 3. Розробити математичну модель для розрахунків: теплових потоків, коефіцієнтів тепловіддачі, динаміку гідравлічних способів диспергування рідини - води з різними концентраціями поверхнево-активних речовин, критичних теплових потоків та температур поверхні в області переходу від плівкового до бульбашкового режиму кипіння до функцій визначальних факторів. 4. Встановити самостійний вплив ступеня нестаціонарності процесу на умови теплообміну.Документ Експериментальний стенд для дослідження локальних умов нестаціонарного теплообміну(Національний технічний університет "Харківський політехнічний інститут", 2024) Селіхов, Юрій Анатолійович; Миронов, Антон Миколайович; Горбунов, Костянтин Олександрович; Рись, В. Г.Сконструйований експериментальний стенд для дослідження локальних умов нестаціонарного теплообміну при охолодженні високотемпературної поверхні рідиною, що розпилюється: з форсунок різних модифікацій (спрейєрних у тому числі); водоповітряне; пароповітряне; пароводяне; перегрітою рідиною; води із різними концентраціями поверхнево-активних речовин. Аналіз наукових джерел визначив методику досліджень, яка дозволить виконувати дослідження впливу щільності зрошення, температури поверхні, ступеня недогріву рідини, її швидкості та кута натікання на поверхню з урахуванням можливості реалізації зміни визначальних факторів у діапазоні відповідних їх реальних значень у натурних об'єктах енергетики та металургії та завдання вибору методу ідентифікації граничних умов теплообміну. Дослідження інтенсивності теплообміну функції недогріву розпиленої рідини – води з різними концентраціями поверхнево-активних речовин при різних локальних щільностях зрошення і температурах поверхні в наукових публікаціях ми не зустріли. Тому ці дослідження, а також розробка ефективних систем охолодження або визначення теплового стану об'єктів за різних зовнішніх впливів для нас є головними. Для здійснення наміченої нами програми дослідження, крім розробки методики ідентифікації граничних умов теплообміну, виявилося необхідним вирішити низку спеціальних завдань, пов'язаних із визначенням режимних параметрів середовища. До таких належать локальна щільність зрошення і швидкість диспергованого середовища біля поверхні термозонда. Для надійного визначення локальної щільності зрошення, а також визначення дисперсного складу крапель повинен бути використаний лічильно-імпульсний метод, який одержав можливість практичної реалізації в нашій країні. Для визначення локальних умов нестаціонарного теплообміну нами розроблено схему вимірювання ЕРС термоприймачів, встановлених у тілі стрижня термозонда, а також підібрати швидкодіюче цифрове записувальне обладнання. Вирішення зворотного завдання теплопровідності дозволить встановити ступінь впливу практично всіх факторів, зазначених як визначальні.Документ Комплексна теплова інтеграція процесу ректифікації суміші бензол-толуол(Національний технічний університет "Харківський політехнічний інститут", 2024) Рищенко, Ігор Михайлович; Биканов, Сергій Миколайович; Горбунов, Костянтин Олександрович; Миронов, Антон Миколайович; Ільченко, М. В.Здійснено комплексну теплову інтеграцію процесу ректифікації суміші бензол-толуол. Теплова інтеграція проводилась за допомогою методів пінч-аналізу та із застосуванням термокомпресії. За основу взята принципова технологічна схема ректифікації суміші бензол-толуол продуктивністю 11 т/год. Для даної продуктивності на основі матеріального та теплового балансу розраховано витрати потоків, їх температури, теплове навантаження, потокові теплоємності. На основі розрахованих даних сформовано потокову таблицю. Для інтеграції обрано три гарячих потоки: дистилят, кубовий залишок та пар з верху колони, та два холодних потоки: початкова суміш та куб колони. Для здійснення термокомпресії розраховано необхідний ступень стиску парів. Для визначеного ступеня стискання розраховано температуру пара після стиску та температуру його конденсації. На основі техніко-економічних міркувань для даної технологічної схеми процесу ректифікації визначено мінімальну різницю температур Tmin=12 °С. Для обраної Tmin побудовано складові криві потоків. За допомогою метода табличного алгоритму визначено температуру пічна для гарячих і холодних потоків, які становлять ТН пинч=82 °С, ТС пинч=70 °С. Визначено мінімальну кількість гарячих і холодних утиліт: QНmin та QСmin. Для обраного Tmin отримано рекуперацію тепла у кількості Qрек=2186,82 кВт. Побудовано сіткову діаграму, розташовано теплообмінники у відповідності із СР та N правилами. Запропоновано технологічну схему процесу ректифікації після реконструкції із використанням термокомпресії. Модернізована схема включає використання чотирьох рекуперативних теплообмінників, одного підігрівача та двох холодильників для досягнення цільових температур потоків. Для здійснення термокомпресії пропонується встановити компресор. В якості теплообмінного обладнання запропоновано використання пластинчатих теплообмінників фірми Alfa Laval. Строк окупності запропонованого рішення складає приблизно два–два с половиною роки.Документ Дослідження процесів зовнішнього масопереносу при адсорбції з розчинів у апараті з перемішуванням(Національний технічний університет "Харківський політехнічний інститут", 2021) Соловей, Валентин Миколайович; Горбунов, Костянтин Олександрович; Верещак, В. О.; Горбунова, Ольга ВолодимирівнаВивчено спосіб транспортно-контрольованого масопереносу до частинок, підвішених в посудині з мішалкою. Було досліджено рух частинок у рідині і запропонований метод розрахунку відносних швидкостей в термінах теорії локальної ізотропної турбулентності Колмогорова для масоперенесення. Для більш конкретної візуалізації складної хвильової форми турбулентності виявилися зручними концепції вихорів, які характеризуються швидкістю, масштабом (або хвильовим числом) і енергетичним спектром. Великомасштабні рухи масштабу містять майже всю енергію, і вони безпосередньо відповідальні за дифузію енергії по всьому посуду для перемішування за рахунок кінетичної енергії і енергії тиску. Однак більша частина енергії майже не розсіюється. Масштаб руху менше відповідає за передачу конвективної енергії ще меншим вихровим часткам. При ще менших масштабах вихорів, близьких до характерних мікромасштабів, як правило присутні дисипація в'язкою енергії й конвекція. Останній діапазон вирів отримав назву універсального рівноважного діапазону. Він був додатково розділений на область з малим розміром вихорів, підобласть в'язкої дисипації і область більшого розміру, підобласть інерційної конвекції. Вимірювання енергетичного спектра в змішувальній ємності показують, що існує діапазон, в якому діє так званий сепеневий закон "-5/3". Відповідно, теорія локальної ізотропії Колмогорова може бути застосована через існування внутрішньої підобласті. Оскільки інтегроване значення локальної швидкості розсіювання енергії узгоджується з потужністю на одиницю маси рідини від робочого колеса, майже вся енергія від робочого колеса в'язко розсіюється в вихорах мікромасштаба. Рекомендовано співвідношення масопереносу до частинок, підвішених в посудині з мішалкою. Результати експериментального дослідження приблизно на 12 % вище прогнозованих значень.Документ Інтеграція процесу теплообміну енергетичної установки(Національний технічний університет "Харківський політехнічний інститут", 2021) Селіхов, Юрій Анатолійович; Коцаренко, Віктор Олексійович; Горбунов, Костянтин ОлександровичПоновлювані джерела енергії (ПДЕ) не обмежені геологічно накопиченими запасами. Їх використання і споживання не призведе до неминучого вичерпання запасів Землі, і вони не забруднюють навколишнє середовище. Основним мотивом прискореного розвитку відновлюваної енергетики в Європі, США і багатьох інших країнах є турбота про енергетичну незалежність і екологічну безпеку. Так, в странах ЄС прийнято програму досягнення вкладу ПДЕ в енергетичний баланс до 2020 року до 20%, а до 2040 р – до 40%. Відновлювана енергетика характеризується багатогранністю, різноманітністю. У переліку завдань, що виникають при реалізації проектів відновлюваної енергетики (ВЕ) (крім технологічних і технічних), залишаються питання оцінки можливості та ефективності використання ПДЕ для енергозабезпечення регіонів. Одночасно слід враховувати, що найчастіше користувача цікавлять комплексні оцінки з різних видів джерел енергії. У конкретних регіонах найбільш ефективним може стати або використання гібридних енергоустановок, або створення теплоенергетичних установок на різних типах відновлюваної енергії. У зв'язку з комплексністю даної проблеми, а також географічною «регіональністю» відновлюваної енергетики, стає можливим і актуальним тема цієї статті. Пропонується теплоенергетична установка для постачання: електроенергією, гарячою водою, гарячим повітрям і опаленням, в якій спільно з вітроелектрогенератором, двухконтурною сонячною установкою, використовується тепловий насос, акумулятори електроенергії і теплоти. Ця установка дозволяє зменшити собівартість теплової енергії за рахунок зниження матеріаломісткості і витрат на обладнання, економити органічне паливо; виробляти електроенергію і надлишок її віддавати в державну електромережу; зменшити теплове навантаження і забруднення навколишнього середовища.Документ Інтеграція технологічних потоків бражної та епюраційної колони в процесі виробництва ректифікованого етилового спирту(Національний технічний університет "Харківський політехнічний інститут", 2021) Рябова, Ірина Борисівна; Гарєв, Андрій Олегович; Гарєв, Л. А.; Горбунов, Костянтин ОлександровичНа сьогодні етиловий спирт є речовиною, використання якої поширено у багатьох галузях промисловості. Технологія виробництва етанолу з будь-якої органічної сировини найчастіше включає ректифікацію, яка є енергоємним процесом. Висока ціна енергоносіїв і постійне її зростання призводять до суттєвого збільшення вартості продукції. Зменшення питомих витрат енергії на одиницю продукції може вирішити комплекс питань: по-перше, зменшити собівартість продукції, по-друге, в масштабах держави, полегшити енергозалежність від зовнішніх постачальників енергії. Детальний аналіз енергетичного потенціалу технологічних потоків з метою вирішення задачі зменшення енерговитрат надихає на розробку більш енергоефективних рішень організації цього процесу. Пошук альтернативних рішень демонструє, що одним з методів зменшення питомих витрат енергії на виробництво етанолу, зокрема таким, що не потребує тотальної реконструкції виробництва, є метод інтеграції процесів, що базується на пінч-аналізі. Екстракція даних технологічних потоків була здійснена на основі регламентної документації апаратурно-технологічної схеми установки централізованої розгонки ГФЕС (головної фракції етилового спирту) та звіту з енергоаудиту даної установки, який був здійснений на одному з спиртових підприємств України. Для теплової інтеграції існуючого процесу, було обрано дві колони установки централізованої розгінки етилового спирту :бражну та епюраційну. Були розраховані тепловий та матеріальний баланси цих колон установки ГФЕС. Для максимальної реалізації енергетичного потенціалу технологічних потоків, були використані принципи пінч-проектування та спроектовано сіткову діаграму. Для максимізації рекуперації теплової енергії було задано ΔТmin - 3ºС. Це призвело до необхідності використання енергоефективного теплообмінного обладнання. Суттєве зменшення використання зовнішніх утиліт (холодних на 48% та гарячих – на 38%) для обраних технологічних потоків та невеликий термін окупності проекту (близько трьох місяців) робить доцільним використання такого роду рішення проблеми.